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Protein unfolding — an important process in vivo?

Andreas Matouschek

Protein unfolding is an important step in several cellular
processes, most interestingly protein degradation by
ATP-dependent proteases and protein translocation across
some membranes. Unfolding can be catalyzed when the
unfoldases change the unfolding pathway of substrate proteins
by pulling at their polypeptide chains. The resistance of a protein
to unraveling during these processes is not determined by the
protein’s stability against global unfolding, as measured by
temperature or solvent denaturation in vitro. Instead, resistance
to unfolding is determined by the local structure that the
unfoldase encounters first as it follows the substrate’s
polypeptide chain from the targeting signal. As unfolding is a
necessary step in protein degradation and translocation, the
susceptibility to unfolding of substrate proteins contributes to the
specificity of these important cellular processes.
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Abbreviations

BPTI bovine pancreatic trypsin inhibitor
DHFR dihydrofolate reductase

ER endoplasmic reticulum

WASP  Wiskott-Aldrich syndrome protein

Introduction

Most proteins fold into well-defined three-dimensional
structures to be active. However, unfolding plays a cri-
tically important role in at least three biological processes:
protein translocation across some membranes; protein
degradation by ATP-dependent proteases; and the pas-
sive elasticity of striated muscle (Figure 1). The mechan-
isms of unfolding in these three processes resemble each
other much more closely than they resemble protein
global unfolding induced by temperature or solvents such
as urea. In all three cases, it appears that unfolding is
induced by the cellular machinery pulling at the polypep-
tide chain to unravel the native domains. In this review, I
will describe the experimental strategies that led to these
conclusions. I will also discuss how protein unfolding

appears to play an important role in conferring specificity
to protein translocation and degradation in the cell.

Protein translocation

Membranes subdivide the cytoplasm of eukaryotic cells
into compartments with well-defined protein composi-
tions. Many of the proteins found in the various compart-
ments are synthesized in the cytosol and then transported
to their different destinations. Protein import into mito-
chondria, chloroplasts, peroxisomes and the endoplasmic
reticulum (ER) occurs through membrane channels,
which are lined by proteins. For some of these compart-
ments, proteins can only translocate through the import
channels in an unfolded conformation, presumably
because of the size of the pores in the import channels.
I will begin by discussing protein import into mitochon-
dria, specifically protein transport into the mitochondrial
matrix, because this system is well characterized and the
role of protein unfolding is clear.

Mitochondria

Mitochondria are surrounded by two membranes
(Figure 2). Proteins targeted to the innermost compart-
ment, the matrix, are synthesized in the cytosol as pre-
cursors with N-terminal targeting sequences. These
precursors have to travel to the matrix via two membrane
channels. The channel in the outer membrane has a
diameter of 20-26 A and is rigid [1-3]. The channel across
the inner membrane is flexible, but its maximum dia-
meter is smaller than that of the outer membrane channel
[3-5]. The steric constraints imposed by the import
channels require even small proteins to be in an unfolded
conformation to pass through the channels. Import of
dihydrofolate reductase (DHFR) is blocked when the
enzyme is stabilized by binding the high-affinity ligand
methotrexate [6] and bovine pancreatic trypsin inhibitor
(BPTT) can only be imported into the matrix when its
disulfide bridges are reduced [7]. Translocating proteins
appear to be in a fully unfolded conformation normally
because even a single disulfide bridge introduced into an
importing precursor inhibits import to a small but sig-
nificant extent [4].

The next question is whether proteins fold in the cytosol
before translocation. Proteins can be imported into mito-
chondria post-translationally, both iz vive and in vitro
[8,9], but, traditionally, it has been assumed that precursor
proteins remain unstructured until they reach the matrix,
probably for three reasons. First, there was no precedent
for a cellular unfolding activity and the simplest explana-
tion for import was that precursor proteins never folded.
Second, protein import requires chaperones and ATP
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Protein unfolding occurs during translocation across some membranes
and during degradation by ATP-dependent proteases (the targeting
signal is shown in red).

Figure 2
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outside mitochondria, which were assumed to keep pro-
teins in unfolded conformations [10,11]. Third, evidence
from work on one of the bacterial protein export systems
showed that the bacterial export sequence destabilizes
proteins before translocation [12]. However, over the past
five years, a consensus has slowly developed that mito-
chondria can actively unfold proteins, although differ-
ences on the proposed mechanism of unfolding remain
[13]. Therefore, it is necessary to revisit the question
whether proteins fold before translocation.

The folding state of precursors before import has been
analyzed directly /# vivo and in both cases the proteins
were found to be in the native conformation [14,15]. In
the first study, DHFR targeted to mitochondria was
expressed in yeast cells. Import of the DHFR precursor
was blocked when a substrate analog was introduced into
the cytosol [14]. In the second study, 7z vive import of the
heme-binding domain of cytochrome 4, was blocked
when the unfolding activity in the mitochondrial inner
membrane was disengaged [15]. It appears likely that
many other precursor proteins will fold before import.
Generally speaking, protein folding in the eukaryotic
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The mitochondrial protein import machinery. Proteins in the outer/inner membrane are called Tom/Tim, followed by the number indicated in the figure.
The number reflects their approximate molecular weight. During import, precursor proteins first interact with the Tom20 and Tom22 receptors through
their targeting sequence. The Tom70 receptor binds precursors associated with cytosolic chaperones. Targeting sequences insert into the Tom40
channel and pass through the Tom23 complex into the matrix. Import into the matrix always requires an electrical potential across the inner
membrane and the ATP-dependent action of mtHsp70. mtHsp70 is found bound to the import machinery through Tim44 and free in the matrix.
Precursors begin to interact with mtHsp70 while they are still associated with the import channels. G, J: mGrpE, Mdj1 — two co-chaperones of

Hsp70; IM/OM: inner/outer membrane; m-70: mtHsp70.
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100 Folding and binding

cytosol appears to occur soon after translation. In cukar-
yotic cells, N-terminal domains of nascent proteins fold
before synthesis of the C-terminal domains is complete
[16,17]. Other than the presence of the targeting
sequence, there is no obvious difference between a
cytosolic protein and a mitochondrial precursor protein.
Indeed, there are examples of cytosolic and mitochondrial
proteins with identical amino acid sequences outside the
targeting sequence. In the three proteins analyzed, the
mitochondrial targeting sequences do not affect the struc-
ture or folding of their passenger proteins [18-20]. Thus,
it appears likely that many precursor proteins will fold
soon after translation.

If mitochondrial precursors fold in the cytosol, why are
chaperones required for the import of some proteins? The
involvement of cytosolic chaperones in import has been
studied primarily using cell-free assays. Precursors are
synthesized by 7z vitro transcription and translation in a
reticulocyte lysate, which contains the factors necessary
for efficient protein import into mitochondria [11]. When
a variety of authentic and engineered precursors were
examined, it was found a subset requires extramitochon-
drial ATP for matrix import [10], presumably for the
action of cytosolic chaperones [11]. The precursors that
required external ATP were either membrane proteins or
subunits of multimeric protein complexes [10]. Thus,
cytosolic chaperones probably facilitate import of precur-
sors that are unable to fold in the cytosol and therefore are
prone to aggregation. Also, it is well established that
mitochondria can import chemically pure folded precur-
sor proteins (e.g. [6,21]). In conclusion, mitochondria are
presented with folded precursor proteins and therefore
must somehow unfold these proteins during import.

Catalyzing precursor unfolding

Proteins are in an unfolded conformation during translo-
cation, but mitochondria can import folded proteins (e.g.
[6,21]). More importantly, mitochondria can import
folded proteins many hundred times faster than these
proteins unfold spontaneously, which reveals a mitochon-
drial unfolding activity [22]. Indeed, it was found that
mitochondria can catalyze unfolding by changing the
unfolding pathway of a model precursor protein, just like
enzymes catalyze some chemical reactions by changing
the reaction pathway [18]. The model protein consisted of
the ribonuclease barnase with a series of targeting
sequences attached to its N terminus. The unfolding
pathway of barnase during import into yeast mitochondria
differs substantially from the pathway of spontaneous
global unfolding observed in free solution. During import,
the model protein is unraveled from its N terminus. Once
the process has been initiated at the N terminus, the rest
of the precursor protein denatures rapidly [18]. By con-
trast, spontaneous unfolding of barnase in free solution
begins as a global process, with a large part of the structure
opening up during the first steps [23] (Figure 3).

Figure 3
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Unfolding pathways of barnase [18]. Sketches of the structure of
barnase, color coded according to the order in which structure is lost
(a) during spontaneous global unfolding in vitro and (b) during import
into mitochondria. The parts of the structure shown in red unfold early,
whereas those shown in blue unfold late. Figure reproduced from [18]
with permission.

How do mitochondria unravel precursor proteins? The
mitochondrial surface itself does not seem to catalyze
unfolding [24], although it is able to trap unfolded protein
in the denatured state [25]. Instead, precursor proteins
that are inserted into the import machinery appear to
engage the unfolding machinery when the targeting
sequence is long enough to reach the inner mitochondrial
membrane [18,22,26,27°]. T'wo factors can induce unfold-
ing, mtHsp70, a homolog of the chaperone Hsp70 found
in the mitochondrial matrix [8,13], and the electrical
potential across the inner membrane [27°]. However,
many precursors are not able to interact with mtHsp70
before import because their targeting sequences are too
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short to reach across the two mitochondrial membranes
(Figure 2). The shortest precursor found to be able to
interact with mtHsp70 before its mature domain unfolds
at the mitochondrial surface has a 52 amino acid targeting
sequence [26]. Itis difficult to determine the length of the
unstructured N-terminal regions of mitochondrial pre-
cursor proteins. A review of all the yeast proteins listed as
mitochondrial in the yeast proteome database (YPD)
shows that the average length of the N-terminal part of
precursor proteins preceding the processing site is 31
amino acids (standard deviation 18 amino acids). There-
fore, most targeting sequences are probably too short to
allow a native precursor to engage mtHsp70.

T'he electrical potential across the inner membrane is able
to act on precursors before they reach mtHsp70 because
of its physical location (Figure 2). Respiring yeast mito-
chondria maintain an electrical potential of approximately
150 mV across the inner membrane, which is positive at
the outer (intermembrane space) surface and negative at
the inner (matrix) surface of the membrane. Because
mitochondrial matrix targeting sequences are positively
charged, a targeting sequence in the import channel
should be pulled towards the matrix. Indeed, experi-
ments demonstrated that passenger proteins are unfolded
at the mitochondrial surface when the electrical potential
acts directly on positively charged amino acid sidechains
of the targeting sequence [27°]. The electrical potential
has two functions in addition to protein unfolding. It
supports the insertion of the targeting sequences into
the import channels [27°,28,29] and it maintains the
appropriate dimerization state of a component of the
inner membrane import channel [30].

Figure 4
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What is the function of mtHsp70? mtHsp70 interacts
directly with translocating precursors [31,32] and is
required for the matrix import of all proteins, whether
they contain folded domains or not [10,31,33]. In addition,
mtHsp70 is directly involved in the unfolding of precur-
sors with very long targeting sequences, as demonstrated
by the identification of a specific mutation in mtHsp70
that affects the import only of precursors that contain a
folded domain [34,35]. Thus, mtHsp70 unfolds precur-
sors with very long targeting sequences and C-terminal
domains in multidomain precursors. Most other matrix-
bound precursors are probably unfolded by the electrical
potential [27°]. In addition, all precursors may require
mtHsp70 to overcome friction between translocating
proteins and the import channel [36].

How effective is the unfolding activity?

Barnase precursors are efficiently unfolded by mitochon-
dria, even when greatly stabilized by tightly binding
ligands [18]. There appears to be no maximum stability
that cannot be overcome by the import machinery. By
contrast, import of DHFR precursors can be blocked
when the protein is stabilized by ligand binding
[6,18,37]. Thus, although mitochondria can catalyze the
unfolding of DHFR precursors [22], DHFR can be too
stable to be unfolded by mitochondria [18]. This observa-
tion is at first surprising because barnase is considerably
more stable than DHFR against unfolding iz vitro and
binds its ligand with similar affinity. However, the dif-
ference can be rationalized by a comparison of the struc-
tures of these proteins (Figure 4). The first 12 amino acids
of barnase’s globular domain form an o helix at the surface
of the structure. The protein collapses when the mito-
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Sketches of the structures of (a) barnase and (b) DHFR, with their tightly binding ligands barstar and methotrexate, respectively, shown in purple.
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102 Folding and binding

chondria peel the N-terminal o helix off the surface of the
structure by pulling at the targeting sequence [18,27°]. In
the case of DHFR, the N-terminal stretch of the poly-
peptide chain forms an internal B strand in a f sheet thatis
sandwiched between two layers of o helices (open sheet
a/p fold, which is the most common protein fold [38]).
Presumably, the buried region cannot be unraveled until
the protein unfolds globally to release its N terminus.
Authentic mitochondrial proteins with both types of
structural features exist. Cytochrome &, and citrate
synthase resemble barnase in that their compact domains
begin with o helices. As predicted, cytochrome 4, is
efficiently unfolded by mitochondria when stabilized
by its heme cofactor [39,40]. By contrast, the folds of
mtHsp70 and aldehyde dehydrogenase are more similar
to DHFR. In conclusion, the susceptibility of proteins to
being unfolded by mitochondria depends not only on the
proteins’ stability against global spontaneous unfolding,
but primarily on their local structure adjacent to the
targeting signal [18,41°].

Protein sorting

Clearly, the fidelity of protein sorting is critically impor-
tant for cellular survival. For protein import into the
mitochondrial matrix, specificity is, to a large extent,
conferred by the N-terminal targeting sequences
[42,43]. However, it appears that not all the sorting
information is encoded in these N-terminal extensions.
When a collection of random peptides was attached to the
N terminus of subunit IV of cytochrome oxidase (COX
IV), approximately a quarter of these constructs were
imported into mitochondria [44]. In addition, there have
been some reports that the mature domain affects import
efficiency [45,46]. Indeed, when proteins of different
stabilities and folds are attached to the same targeting
sequence, the import efficiencies of these constructs vary
considerably, with precursors that are more difficult to
unfold importing less well [18,22,47,48]. Together, these
results suggest that the susceptibility of the mature
domain of precursor proteins to unfolding contributes
to the specificity of protein import into mitochondria.
As the length [18,22] and charge [27°] of the targeting
sequence determine how well a precursor protein can
engage the unfolding machinery, effective sorting to the
mitochondrial matrix requires that the targeting sequence
and mature domain are properly matched to each other. In
other words, sorting information is located in both the
targeting sequence and the mature domain.

Protein transport into other compartments

Protein unfolding may also play a role in protein import
into chloroplasts and the ER. Chloroplasts are surrounded
by two membranes and are divided into two compart-
ments, the stroma and the thylakoids. Protein import into
chloroplasts is also thought to occur post-translationally
and, following the reasoning above, presumably some
precursors will fold before translocation. However, it is

less clear whether proteins must always unfold during
import. It appears that the small protein BPTT can trans-
locate across the envelope with intact disulfide bridges
[49], whereas the somewhat larger DHFR unfolds during
translocation [50,51]. Similarly, large enzymes or protein
complexes can block translocation across the envelope
when they are stabilized against unfolding [52-54]. T'rans-
location of proteins from the stroma into the thylakoids
occurs through two different translocation machineries,
which seem to impose different steric requirements on
their substrates. The ApH-dependent pathway tolerates
folded proteins [49], whereas the Sec-related pathway is
blocked when proteins are prevented from unfolding [55].

Most protein translocation into the ER occurs co-transla-
tionally and therefore most preproteins do not fold before
translocation. However, some translocation into the ER
does occur post-translationally, especially in yeast, and it is
possible that some of those precursor proteins will fold in
the cytosol [56]. The internal diameter of the import
channel into the ER has been estimated to be 2040 A
at its narrowest point [57-59]. Some experimental results
suggest that proteins have to be in an unfolded conforma-
tion to fit through the translocation channel [60]. Thus, for
proteins imported into the ER post-translationally, unfold-
ing at the entrance of the translocation channel may occur.

One striking similarity between the mitochondrial, chloro-
plastand ER import systems is the presence of homologs of
the chaperone Hsp70 at the lumenal side of the transloca-
tion channel [61]. Thus, protein unfolding during import
into chloroplasts and during post-translational import into
the ER may play a similar role as during import into
mitochondria.

Protein degradation by ATP-dependent
proteases

Protein degradation by ATP-dependent proteases at first
seems to be entirely unrelated to protein translocation.
However, it turns out that the mechanisms of protein
unfolding in each process are surprisingly similar.

Protein degradation by ATP-dependent proteases is a
critical step in the control of many cellular processes [62].
In cukaryotic cells, the most important of these proteases
is the proteasome, which is located in the cytosol and
nucleus. The proteasome is responsible for the degrada-
tion of short-lived regulatory proteins and abnormal poly-
peptides, and for the production of peptides for antigen
presentation [63]. Degradation by the proteasome gen-
erally involves two consecutive steps: targeting the sub-
strate to the proteasome by the attachment of multiple
ubiquitin moieties to lysine residues (Figure 5) and
degradation of the modified protein by the protease [64].

The substrate specificity of the proteasome is tightly
controlled by the sequestration of the proteolytic active
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Protein targeting to ATP-dependent proteases. Most substrates are targeted for degradation by the proteasome through the covalent attachment of
multiple ubiquitin molecules to lysine residues in the substrate. The first ubiquitin molecule is attached through an isopeptide bond between the
C-terminal carboxyl of ubiquitin and the e amino group of the lysine residue. Many substrates of ATP-dependent proteases of prokaryotic origin are
targeted for degradation by N- or C-terminal degradation signals. For example, the 11 amino acid SsrA tag is attached to the C terminus of proteins if
their translation is prematurely arrested on a damaged mRNA. The modified proteins can be recognized by CIpAP and ClpXP. Another
well-characterized targeting mechanism is the bacterial N-end rule pathway. Here, the identity of the first amino acid of a protein in the context of an
unstructured N terminus determines the life-time of the protein by targeting it to CIpAP. Different N-terminal residues have different targeting

efficiencies.

site deeply within the structure of the protease [63]
(Figure 6). The proteasome is a large cylindrical particle
formed by a central proteolytic core with regulatory caps
at either end. The active sites of ATP hydrolysis are
located in the caps. The proteolytic sites are in the central
core and are accessible only through a narrow channel that
runs along the long axis of the particle. In the isolated
yeast core particle, the entrance to the degradation chan-
nel is blocked by the N termini of the o subunits at the
small ends of the cylindrical particle. The channel opens
when the regulatory caps bind to the core [65°]. At its
narrowest point, the opened degradation channel is
approximately 13 A wide [65°,66°]. This constriction is
too small for folded proteins to fit through it and substrate
proteins must unfold to gain access to the proteolytic sites
[67]. Indeed, stabilizing a substrate protein against
unfolding can protect it from degradation [41°,68].

Other ATP-dependent proteases, such as the Lon,
ClpXP, ClpAP and HslUV proteases, fulfill functions in
organelles and prokaryotes that are similar to those of the
proteasome (Figure 6). Although these proteases show no
strong sequence homology to the proteasome, their over-
all architectures resemble each other [69,70]. These
proteases also form large cylindrical particles that seques-
ter their active sites of proteolysis in a central cavity.
Access to the cavity is controlled by ATPase subunits at
the entrance to a narrow degradation channel. Substrate

proteins are often targeted to the protease by N- or
C-terminal sequences, similar in principle to the targeting
sequences found in the translocation systems discussed
above (Figure 5). Again, the dimensions of the degrada-
tion channel require substrate proteins to be in an
unfolded conformation to be degraded [69].

Mechanism of unfolding

As one of the functions of ATP-dependent proteases is
the destruction of active regulatory proteins, many of the
protease substrates are folded before degradation. An
unfolding activity was first demonstrated for CIpAP
[71] and it is now clear that the proteasome, ClpXP
and an archaebacterial proteasome homolog are also able
to unfold proteins [41°,72,73°~77°]. Studies with model
proteins revealed that these proteases induce unfolding
by unraveling their substrates from their targeting signals,
just as mitochondria unfold importing precursor proteins
[41°].

The mechanism of protein unfolding by the proteasome
was analyzed in experiments that are similar to those
described above for mitochondrial import [41°]. Barnase
and DHFR were targeted to the proteasome and the Clp
proteases, and efficiently degraded i vitro. When DHFR
is stabilized by ligands, its degradation is blocked; how-
ever, stabilizing barnase does not affect its degradation.
Following the same reasoning as above for mitochondrial
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Figure 6

Structures of the proteasome and CIpAP [70]. From left to right: structure of the eukaryotic proteasome holoenzyme from Xenopus laevis [107] as
determined by electron microscopy, the core particle is shown in blue, the ATPase caps are in pink; medial cut-aways of the proteasome core
particles from T. acidophilum (top) [108,109] and yeast (bottom) [110] as determined by crystallography, active sites of proteolysis are indicated by red
dots, the slice surface is shown in green; structure of the CIpAP holoenzyme as determined by electron microscopy [111]; structure of the ClpP
particle, the proteolytic core of CIpAP, as determined by crystallography [112]. Figure reproduced from [70] with permission.

import, it seems likely that susceptibility to unfolding by
the proteases is also determined by the local substrate
structure adjacent to the targeting signal. This conclusion
was tested by monitoring the degradation of circular
permutants of DHFR. In these permutants, the N and
C termini of DHFR are connected by a short glycine
linker and new termini are introduced at various positions
throughout the structure (Figure 7). The resulting pro-
teins have almost identical structures and differ primarily
in the points of attachment of the degradation signals
[41°]. However, these circular permutants showed differ-
ent susceptibilities to unfolding and degradation by the
A'TP-dependent proteases. Proteins were more easily
unfolded when the degradation signal leads into a stretch
of the polypeptide chain that forms an o helix or irregular
loop at the surface of the folded domain. Substrates are
more difficult to unfold and degrade when the degrada-
tion signal leads into a B strand. Thus, the local structure
next to the degradation signal strongly influences the
ability of a protein to be unfolded and degraded by the
proteases. This finding suggests that the proteases unra-
vel their substrates from the targeting signal. Indeed, in
substrate proteins with more than one folded domain, the
proteases first unfolded and degraded the domain at the
N terminus adjacent to the targeting signal and then the
next domain in the protein. Because the spontancous
global unfolding of barnase follows a different pathway,
the proteases can catalyze unfolding by changing the
unfolding pathway of their substrates, just as was the
case for mitochondrial protein import [41°].

The sequential degradation of substrates by CIpAP was
also demonstrated by fluorescence resonance energy
transfer experiments [78°]. In these experiments, an
energy donor was attached to the protease subunits of

Figure 7
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Circular permutants of DHFR. In the permutants, the N and C termini of
DHFR are connected by a short glycine linker, and new termini are
created at Pro25 or Lys38. The figure also shows methotrexate bound
to the active site of DHFR.
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CIpAP and an energy acceptor was attached either to the
N terminus of the substrate or next to the degradation
signal at the C terminus of the substrate. In kinetic
degradation experiments, the probe near the degradation
signal interacted with the protease probe before the
N-terminal probe, indicating that the polypeptide chain
is threaded into the protease from the degradation signal
[78°]. In addition, biochemical and electron microscopy
experiments demonstrated the sequential interaction of
substrate proteins first with the ATPase subunits and
then with the protease subunits of CIpAP and ClpXP
[73°-76°].

One observation has been interpreted to contradict the
mechanism described above. The archaebacterial protea-
some unfolds proteins even when translocation of the
polypeptide chain into the degradation channel is blocked.
"This finding may indicate that translocation and unfolding
are not necessarily coupled [77°]. However, alternative
interpretations of these results are also possible.

Specificity of degradation

The mechanism of unfolding proteins by unraveling
them from their degradation signals has several conse-
quences. First, it allows the proteases to specifically
degrade single subunits of a larger complex without
affecting the other components. For example, the protea-
some degrades the cell-cycle inhibitor Sicl while it is
associated with the yeast S-phase cyclin—cyclin-depen-
dent kinase (CDK) complex to release active CDK [79°].

Second, the observation that proteins are difficult to
unfold from B structures is interesting in the context of
diseases that are characterized by the accumulation of
large intracellular protein aggregates, such as Parkinson’s
and Huntington’s diseases [80,81]. The protein aggre-
gates are found associated with ubiquitin and components
of the proteasome, suggesting that the cell tries to
degrade the aggregates, but is unable to do so. The
aggregates associated with amyloid diseases are charac-
terized by the accumulation of long fibers with extensive
B-sheet character, even if the native structure of the
constituent proteins is largely o helical [82-85]. It has
been proposed that at least the aggregates found in
Huntington’s disease are also formed by B structures [86].

Third, differences in the susceptibility to unfolding of
domains within a substrate influence the end product of
the degradation reaction. The ATP-dependent proteases
analyzed degrade their substrate sequentially from the
degradation signal and therefore a resistant domain can
protect the distal parts of a larger protein from proteolysis
[41°]. These two features of degradation provide a
mechanism for the processing of proteins by partial
degradation. Some experimental evidence suggests that
this mechanism explains the activation of the p50 subunit
of the transcription factor NFkB [41°], which plays a

Protein unfolding in vivo Matouschek 105

central role in the regulation of immune and inflammatory
responses in mammals [87]. It remains to be seen whether
the mechanism is applied more generally in the cell. For
example, the transcription factors Cubitus interruptus in
Drosophila [88], and Spt23 and Mga2 in yeast [89] are
activated by processing. This processing could be due to
partial degradation by the proteasome using the mechan-
ism described for NFxB [41°,90°].

Unfolding in muscle

Protein unfolding during translocation and degradation
are similar because, in both systems, unfolding occurs
together with translocation of the polypeptide chain. This
mechanism suggests a picture of domains being unraveled
by the unfolding machinery pulling at the polypeptide
chain. This simple pulling mechanism of unfolding occurs
in domains of the muscle protein titin (connectin).

The functional unit of muscle is an elongated structure
called the sarcomere. Actin filaments are attached to both
ends of the sarcomere and, during contraction, the ends
are pulled toward each other by a bundle of myosin fibers
in the center of the sarcomere. The sarcomere ends are
held together by titin molecules [91,92]. Titins are excep-
tionally large proteins and single titin molecules span half
a sarcomere. One titin polypeptide chain has a relative
molecular mass in the range of three to four million
Daltons and is more than one micrometre long. The
molecule consists mainly of around 300 compact domains
with immunoglobulin or fibronectin folds, and only 10%
or less consists of unique sequences. Among the unique
sequences is the PEVK region, which can be around 1000
amino acids long and consists mainly of proline, glutamic
acid, valine and lysine residues. The PEVK region does
not fold into a unique globular structure. Together, these
features give titin an elongated, string-like shape.

The response of sarcomeres to tension is determined by
the properties of the titin molecules. The mechanical
properties of single titin molecules have been investi-
gated extensively by atomic force microscopy and optical
trapping experiments [93-96]. In these experiments, one
end of the titin molecule is attached to a surface and a
pulling force is applied to the other end. The experi-
mental set-up allows the recording of the force on the titin
molecule as a function of its extension. There are three
factors contributing to the elasticity of titin 7z vitro. At the
lowest extension forces, the disordered conformation of
the string-like molecule resists straightening through
entropic effects. If the straightened molecule is then
extended further, the PVEK region deforms, which again
resists extension through effects largely entropic in nat-
ure. As the pulling forces increase, single immunoglobu-
lin and fibronectin domains begin to unfold. This
unfolding is reversible and the domains refold if the
molecule is relaxed. There is some debate as to which
of the three mechanisms makes the most important
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contribution to muscle tension iz vive (e.g. [97,98]).
However, overall, the evidence suggests that unfolding
of single immunoglobulin and fibronectin domains in titin
contributes to the elasticity of striated muscle 7z vivo [92].
Protein domains vary in their resistance to unfolding by
pulling [99-101] and it is possible that the stiffness of
various muscle fibers is adjusted through the domain
composition of the constituent titin isoforms. As we have
come to expect from the observations on protein unfold-
ing during import and degradation, the resistance of a
protein against unfolding by pulling is not determined by
the protein’s thermodynamic stability [99,100].

The molecular elasticity of other proteins with structural
roles, such as the extracellular matrix protein tenascin
[102] and the intracellular scaffold protein spectrin [99],
has also been determined 7z vitro, but it is not clear
whether unfolding plays a physiological role in these cases.

Protein unfolding in vitro and in vivo
Mitochondria and ATP-dependent proteases appear to
unfold proteins by unraveling them from their targeting
signals. In both processes, the resistance of substrate
proteins to unraveling is not primarily determined by
the thermodynamic or kinetic stability of the substrate
against global unfolding, as measured iz vifro by heat or
solvent denaturation. How do the unfoldases induce
denaturation? Unfolding occurs together with the thread-
ing of the substrate through a channel. In one simple
mechanism, the unfoldases would trap local unfolding
fluctuations in the part of the substrate structure that
follows the targeting signal, effectively pulling at the
polypeptide chain. Pulling by the unfoldase may also
contribute to denaturation by lowering the energy barrier
of the local unfolding transitions. Sequestering several
amino acids of a compact domain will collapse its struc-
ture because protein folding is highly cooperative [103].
In this model, structures that are difficult to unfold are
those that lack the appropriate local unfolding transitions,
so that the proteases are unable to change their unfolding
pathways [41°].

This mechanism would predict that the resistance of
proteins to unfolding during import and degradation
would correlate with their physical stability against pull-
ing in atomic force microscopy (AFM) experiments.
There has been no systematic study of the physical
properties of the substrates used in the biological experi-
ments and direct comparisons between the two kinds of
experiments will be complicated because pulling rates
differ by orders of magnitude. However, the existing
results are consistent with the mechanism proposed here;
the forces required to unfold barnase [100] and the
a-helical protein spectrin [99] are lower than the forces
required to unfold the B-barrel immunoglobulin domains
of titin [96]. Unsurprisingly, even titin domains can be
unfolded by mitochondria [104].

Other unfolding transitions in the cell

In all the examples of protein unfolding in the cell
discussed so far, denaturation appears to be induced by
pulling. There are of course processes in the cell in which
unfolding occurs by different mechanisms. Two exam-
ples follow.

Amyloid diseases, such as Alzheimer’s disease, involve
the accumulation of large fibrous aggregates of specific
proteins [80,81]. The aggregates can form from folded
globular proteins and it is thought that the critical step in
fiber formation in these cases is the initial spontaneous
unfolding of the native structure [105].

The activity of some proteins is modulated by conforma-
tional changes and some of these changes can be so
considerable that they effectively involve the unfolding
of whole domains. For example, WASP (Wiskott—Aldrich
syndrome protein) family proteins regulate actin cyto-
skeleton formation by providing a nucleation platform for
actin fibers. In the inactive form, WASP proteins form an
autoinhibitory structure in which the actin interaction
domain is occluded by a G-protein-binding domain from
the same polypeptide chain. Release of the actin inter-
action domain occurs when the G protein Cdc42 binds to
the WASP protein and causes dramatic structural rear-
rangements [106°].

Conclusions

Protein unfolding is a critical step in several processes
in the cell. Here, I discussed three examples, transloca-
tion, degradation and extension, in which the mechan-
isms of unfolding are very similar to each other, but
differ from spontancous global unfolding in the cell.
Unfolding can be catalyzed and the collapse of the
folded structure occurs together with the translocation
of the polypeptide chain. The proteins unravel when
the unfolding machinery pulls at the polypeptide chain.
As a consequence of this mechanism, the susceptibility
of a protein to unfolding depends on its structure, as
well as its stability. By making protein degradation and
import dependent on properties of the substrate itself,
as well as its targeting signal, the cell has gained
additional ways of controlling the specificity of these
processes.
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