Frontiers in Reproductive Endocrinology Serono Symposia International

Mechanisms of Hormone Action: Steroid Hormones

Kelly Mayo Northwestern University

Select Families of Nuclear Hormone Receptors

Steroid Receptors

Estrogen Receptor (ER)
Androgen Receptor (AR)
Progesterone Receptor (PR)
Glucocorticoid Receptor (GR)
Mineralocorticoid Receptor (MR)

Non-Steroid Hormones

Thyroid Hormone Receptor (TR)
Vitamin D Receptor (VDR)
Retinoic Acid Receptor (RAR)
9-Cis Retinoic Acid Receptor (RXR)
Ecdysone Receptor (ECR)

Ex-Orphan Receptors

Benzoate X Receptor (BXR)
Steroid and Xenobiotic Receptor (SXR)
Constitutive Androstane Receptor (CAR)
Also RXR, LXR, FXR, PPARs

Mevalonate Pathway

Liver X Receptor (LXR)
Pregnane X Receptor (PXR)
Farnesoid X Receptor (FXR)

Peroxisome Proliferators

PPAR□ (fibrates)
PPAR□(thiazolidinediones)
PPAR□/□

Orphan Receptors

ERR family
NGF1-B family
COUP TF family
NGF1-B family
RVR family
SF-1
LRH-1
Dax-1
HNF-4
GCNF

Selective Estrogen Receptor Modulators (SERMs)

Examples of SERMs:

Tamoxifin (breast cancer)
Antagonist in breast, but agonist in bone/endometrium

Roloxifene (osteoporosis)
Agonist in bone, antagonist in breast/endometrium

Determinants of SERM Action:

Each ligand (SERM) will induce a unique conformation of the estrogen receptor that impacts its interaction with coregulatory proteins

Each tissue or cell type will contain a unique complement of coregulatory Proteins and a distinct pattern of activation state of these proteins

Additional Pathways of Intracellular Hormone Action

Extrinsic Signals

Arylhydrocarbon Receptor

Intracellular dioxin receptor Ligand activated transcription factor Binds to xenobiotic response element

Nitric Oxide Receptor

Cytoplasmic form of guanylyl cyclase
||/| heterodimer with heme cofactor
Increases cGMP and PKG activity

Intrinsic Signals

Sterol Sensing

P roteolysis of membrane-bound SREBP bHLH domain regulates transcription Proteolysis regulated by sterols

Oxygen Sensing

Prolyl and Asn hydroxylases regulated by O₂ Hydroxylation regulates HIF-□ Heterodimer with ARNT regulates transcription

Mutations of Hormones, Receptors and Signaling Proteins in Reproductive Disease

Hormones

FSH Delayed puberty, primary amenorrhea in females; male hypogonadism
LH Luteal insufficiency, infertility in female; delayed puberty, azoospermia in male

MIS Persistence of Mullerian duct derivatives in males

Receptors

GnRH-R Partial to complete hypogonadotropic hypogonadism, males and females
FSH-R Primary or secondary amenorrhea in females, variable/mild oligospermia in males

LH-R (Loss) Amenorrhea or oligomenorrhea in females, range of defects to complete feminization in males

LH-R (Gain) Male-limited precocious puberty, no phenotype in females Estrogen R Normal puberty, tall stature and unfused epiphyses in male

Androgen R Many mutations, broad range of phenotypes to complete feminization in males

MIS R-II Persistence of Mullerian duct derivatives in males

RET Multiple endocrine neoplasia type 2

Signaling Proteins

Gs protein McCune-Albright Syndrome (gain), male precocious puberty (loss/gain)

Gi protein [Ovarian and adrenal tumors?

Smads Mutations in many cancers, including Smad4 mutation in seminoma testicular germ cell tumor

Transcription Factors

Dax-1 Hypogonadotropic hypogonadism/adrenal failure in male

SF-1 XY sex reversal/adrenal failure

Prop-1 Variable hypogonadotropic hypogonadism in males and females

Emerging and Future Issues in Hormone Action

- Cross-talk between different signaling pathways
 Integration of multiple signals in target cell
 Generation of diverse responses from common stimuli
 Combinatorial codes for signaling diversity
 - Spatial regulation of signaling complexes
 Temporal dynamics of cell signaling
 - Discovering new signaling pathwaysDiscovering ligands for orphan receptors
- Structural solutions to membrane receptors
 Mechanistic structural studies on signaling molecules
 - Genetic approaches to hormone action
 Hormone action and human disease
 Rationale drug design

Additional Readings on Steroid Hormone Action

- Evans (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889.
- Tsai and O'Malley (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem 63:451.
- Rosenfeld and Glass (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276:36875.
- McKenna and O'Malley (2002) Combin atorial control of gene expression by nuclear receptors and coregulators. Cell 108:465.
- Katzenellenbogen et al (2000) Estrogen receptors: selective ligands, partners and distinctive pharmacology. Rec Prog Horm Res 55:163.
- Sanchez et al (2002) Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays 24:244.
- Nilsson et al (2001) Mechanisms of estrogen action. Physiol Rev 81:1535.
- McDonnell (1999) The molecular pharmacology of SERMs. Trends Endocrinol Metab 10:301.
- Jordan (2002) The secrets of selective estrogen receptor modulation: cell-specific coregulation. Cancer Cell 1:215.
- Weatherman et al (1999) Nuclear receptor ligands and ligand-binding domains. Ann Rev Biochem 68:559.
- Kumar and Thompson (1999) The structure of nuclear hormone receptors. Steroids 64:310.
- Chawla et al (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1867.
- Willson and Moore (2002) Genomics versus orphan nuclear receptors: a half-time report, Mol Endocrinol 16:1135.
- Yudt and Cidlowski (2002) The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16:1719.
- Gellman (2002) Molecular biology of the androgen receptor. J Clin Oncol 20:3005.
- Conneely et al (2002) Reproductive functions of progesterone receptors. Rec Prog Horm Res 57:339.