Mechanisms of Hormone Action: Steroid Hormones

Kelly Mayo
Northwestern University

General Mechanisms of Action of Steroid and Peptide Hormones

Steroid Hormone
- Diffuses across plasma membrane
- Binds to DNA in target genes
- Cytoplasmic or nuclear receptor
- Regulates gene transcription
- New mRNAs
- Synthesis of new proteins
- Biological output

Protein Hormone
- Binds to cell surface receptor
- Receptor-associated changes in enzyme activity
- Activation of effector enzymes
- Generation of second messengers
- Changes in enzyme activity
- Biological output

Non-genomic effects via protein-protein interaction
- Changes in enzyme activity
- Biological output

New mRNAs
- Synthesis of new proteins
- Biological output
Select Families of Nuclear Hormone Receptors

Steroid Receptors
- Estrogen Receptor (ER)
- Androgen Receptor (AR)
- Progesterone Receptor (PR)
- Glucocorticoid Receptor (GR)
- Mineralocorticoid Receptor (MR)

Mevalonate Pathway
- Liver X Receptor (LXR)
- Pregnan X Receptor (PXR)
- Farnesoid X Receptor (FXR)

Non-Steroid Hormones
- Thyroid Hormone Receptor (TR)
- Vitamin D Receptor (VDR)
- Retinoic Acid Receptor (RAR)
- 9-Cis Retinoic Acid Receptor (RXR)
- Ecdysone Receptor (EcR)

Peroxisome Proliferators
- PPARα (fibrates)
- PPARδ (thiazolidinediones)
- PPAR γ

Orphan Receptors
- ERR family
- NGFI-B family
- COUP TF family
- NGFI-B family
- RVR family
- SF-1
- LRH-1
- Dax-1
- HNF-4
- GCNF

Ex-Orphan Receptors
- Benzoate X Receptor (BXR)
- Steroid and Xenobiotic Receptor (SX)
- Constitutive Androstane Receptor (CAR)
- Also RXR, LXR, FXR, PPARs

Metabolic Pathways of Nuclear Receptor Ligands

Chawla et al Science 294:1866, 2001
Domain Structure of Nuclear Receptors and Dimerization and DNA Binding Properties

<table>
<thead>
<tr>
<th>Domain</th>
<th>AF-1</th>
<th>DBD hinge</th>
<th>LBD</th>
<th>AF-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>A/B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

Homodimeric Binding to Inverted Repeats
Steroid Receptors
ER, GR, MR, AR, PR
Some Orphan Receptors

Heterodimeric Binding to Direct Repeats
With RXR Partner
Non-Steroid Receptors
TR, RAR, VDR, PPAR

Monomeric Binding to Half Site
Orphan Receptors
Ligand Binding Unknown
SF-1, NGF-1-B, ERR

DNA Binding by Nuclear Hormone Receptors

Sanchez et al, BioEssays 24:244, 2002
DNA Binding by Nuclear Hormone Receptors

ER LBD Homodimer RAR-RXR LBD Heterodimer NGFI-B LBD Monomer

Hormone Enters Nucleus And Interacts with Receptor
Receptor Activation And Dimerization

HATs Coactivators Local Chromatin Remodeling

Activation of Target Gene Transcription
Basal Txn Factors

Cytoplasm
Inactive Receptor Complex
hsp90 hsp70

Nuclear Receptor Signaling Pathways
Nuclear Receptor Coactivators and Corepressors

Coactivators
- SRC-1, NCoA-1
- GRIP-1, TIF-2, SRC-3
- pCIP, ACTR, SRC-3
- Many others

Integrators/Complexes
- CBP, p300
- TRAPs, DRIPs
- SWI/SNF
- pCAF/CARM

Corepressors
- NCoR
- SMRT
- REA
- TRUP, SURF-3

** SRC-1**

<table>
<thead>
<tr>
<th>bHLH</th>
<th>PAS-A</th>
<th>PAS-B</th>
<th>RID</th>
<th>AD</th>
<th>Q-rich</th>
<th>HAT</th>
<th>RID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>632</td>
<td>759</td>
<td>907</td>
<td>955</td>
<td></td>
<td></td>
<td>1440</td>
</tr>
</tbody>
</table>

** NCoR**

<table>
<thead>
<tr>
<th>Repression Domains</th>
<th>Su(H)D</th>
<th>Su(H)D</th>
<th>RID</th>
<th>RID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID1</td>
<td>1</td>
<td>92</td>
<td>751</td>
<td>1035</td>
</tr>
<tr>
<td>SID2</td>
<td>1</td>
<td>1944</td>
<td>2453</td>
<td></td>
</tr>
</tbody>
</table>

Coregulators and Chromatin Remodeling

Inactive
- Corepressors
- HDACs

Active
- Coactivators
- HATS/MTs
- Tn5 Complexes

Remodeling
- Chromatin Modifying ATPases

Inactive Corepressors HDACs

Active Corepressors HDACs

Remodeling

Hormone
Some Nuclear Receptor Ligand-Binding Domains

Structures of Agonist and Antagonist Bound Estrogen Receptor Ligand Binding Domain

Shiau et al Cell 95:927-937, 1998
Complexities in Steroid Hormone Action: Estrogen

<table>
<thead>
<tr>
<th>Receptor Genes</th>
<th>Receptor Variants</th>
<th>Interactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER-α and ER-β</td>
<td>Diverse promoters</td>
<td>ERR Orphan Receptors</td>
</tr>
<tr>
<td></td>
<td>Alternative RNA splicing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-translational modification</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Mechanisms
- Genomic actions
- Complex response elements
- Non-genomic actions

Coregulators
- Tissue specific coregulators
- Combinatorial coregulator code
- Agonist versus antagonist actions

Tissue-Specific Responses

SERMS

Generation of Diversity in Nuclear Receptors: Multiple Estrogen Receptor Genes

<table>
<thead>
<tr>
<th></th>
<th>AF-1</th>
<th>DBD</th>
<th>LBD</th>
<th>AF-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER-α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homology:</td>
<td>23%</td>
<td>86%</td>
<td>24%</td>
<td>58%</td>
</tr>
<tr>
<td>ER-β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homology:</td>
<td>86%</td>
<td>24%</td>
<td>58%</td>
<td>12%</td>
</tr>
</tbody>
</table>

ER-α predominates: Kidney, Adrenal, Pituitary, Testis, Epididymis
Equivalent expression: Mammary gland, Uterus, Bone, Heart, Gut, Brain
ER-β predominates: Prostate, Ovary, Lungs, Bladder
Generation of Diversity in Nuclear Receptors: Multiple Estrogen Receptor Gene Promoters

Human ER-[] Promoters

Potential Implications:
- Tissue- or cell-specific ER expression
- Developmental-specific ER expression
- Alternative splicing of ER transcripts

Generation of Diversity in Nuclear Receptors: Multiple Estrogen Receptor Splice Variants

Shupnik, J Neuroendocrinol 14:85, 2002
Generation of Diversity in Nuclear Receptors: Phosphorylation of the Estrogen Receptor

In response to estrogen binding:

AF-1 DBD AF-2

CDK2 Ser Ser MAPK?
104/106 118

In response to second messenger pathways:

AF-1 DBD AF-2

MAPK Ser Ser RSK Ser PKA
118 167 236

Lannigan, Steroids 68:1, 2003

Generation of Diversity in Nuclear Receptors: Interaction with Other Nuclear Receptor Pathways

ER[] ER[] ERR[] ERR[]

ER[] RER[]

AF-1 DBD LDB/AF-2

68% 37%

ERE AGGTGAnnnTGACCT ERRE TnAAGGTC

Estradol DES/OHT Natural Ligands?

CoA CoR

ERE ERRE Other

Cell-Specific Responses

Giguere, Trends Endocrinol Metab 13:220, 2002
Generation of Diversity in Nuclear Receptors: Multiple Mechanisms of Action

Genomic Actions
- Classical
 - E2 → ERE
- Non-Classical
 - E2 → SP1/AP1 → NF-κB
- Ligand-Independent
 - E2 → ERE

Non-Genomic Actions
- Membrane-Bound ER
- Novel ER?
- Interaction with Other Membrane Proteins

Falkenstein et al, Physiol Rev 52:523, 2000

Generation of Diversity in Nuclear Receptors: Combinatorial use of Coregulatory Proteins

CoActivators
- p160/SRC family
- CBP/p300
- TRAP/DRIP
- “SRA”

CoRepressors
- NCoR/SMRT
- Sin3/HDACs
- “REA”

Differential Regulation of Receptors
- Tissue-Specific Expression
 - “Combinatorial Code”
- Factor-Specific
 - Modification
 - (Phosphorylation, Methylation)

Receptor and Tissue-Selective Effects
Selective Estrogen Receptor Modulators (SERMs)

Examples of SERMs:
- Tamoxifin (breast cancer)
 - Antagonist in breast, but agonist in bone/endometrium
- Roloxifene (osteoporosis)
 - Agonist in bone, antagonist in breast/endometrium

Determinants of SERM Action:
Each ligand (SERM) will induce a unique conformation of the estrogen receptor that impacts its interaction with coregulatory proteins.
Each tissue or cell type will contain a unique complement of coregulatory proteins and a distinct pattern of activation state of these proteins.

Cell-Selective Actions of SERMs

Antiestrogenic
- Surface Silent
 - ER, CoR, CoA
 - Gene Silent

Estrogenic
- Surface Signaling
 - EGFR, HER2/neu, tks
 - Gene Activation
 - AF-2, AF-1, CoR, CoA, ER

Jordan Cancer Cell 11:215, 2002
Additional Pathways of Intracellular Hormone Action

Extrinsic Signals
- **Arylhydrocarbon Receptor**
 - Intracellular dioxin receptor
 - Ligand activated transcription factor
 - Binds to xenobiotic response element
- **Nitric Oxide Receptor**
 - Cytoplasmic form of guanylyl cyclase
 - h / heterodimer with heme cofactor
 - Increases cGMP and PKG activity

Intrinsic Signals
- **Sterol Sensing**
 - Proteolysis of membrane-bound SREBP
 - bHLH domain regulates transcription
- **Oxygen Sensing**
 - Prolyl and Asn hydroxylases regulated by O_{2}
 - Hydroxylation regulates HIF-{\alpha}
 - Heterodimer with ARNT regulates transcription

Mutations of Hormones, Receptors and Signaling Proteins in Reproductive Disease

Hormones
- FSH
 - Delayed puberty, primary amenorrhea in females; male hypogonadism
- LH
 - Luteal insufficiency, infertility in female; delayed puberty, azoospermia in male
- MIS
 - Persistence of Mullerian duct derivatives in males

Receptors
- GnRH-R
 - Partial to complete hypogonadotropic hypogonadism, males and females
- FSH-R
 - Primary or secondary amenorrhea in females, variable/mild oligosperma in males
- LH-R (Loss)
 - Amenorrhea or oligomenorrhea in females, range of defects to complete feminization in males
- LH-R (Gain)
 - Male-limited precocious puberty, no phenotype in females
- Estrogen R
 - Normal puberty, tall stature and unfused epiphyses in male
- Androgen R
 - Many mutations, broad range of phenotypes to complete feminization in males
- MIS R-II
 - Persistence of Mullerian duct derivatives in males
- RET
 - Multiple endocrine neoplasia type 2

Signaling Proteins
- Gs protein
 - McCune-Albright Syndrome (gain), male precocious puberty (loss/gain)
- Gi protein
 - Ovarian and adrenal tumors?
- Smads
 - Mutations in many cancers, including Smad4 mutation in seminoma testicular germ cell tumor

Transcription Factors
- Dax-1
 - Hypogonadotropic hypogonadism/adrenal failure in male
- SF-1
 - XY sex reversal/adrenal failure
- Prop-1
 - Variable hypogonadotropic hypogonadism in males and females
Emerging and Future Issues in Hormone Action

• Cross-talk between different signaling pathways
 • Integration of multiple signals in target cell
• Generation of diverse responses from common stimuli
 • Combinatorial codes for signaling diversity
• Spatial regulation of signaling complexes
 • Temporal dynamics of cell signaling
• Discovering new signaling pathways
• Discovering ligands for orphan receptors
• Structural solutions to membrane receptors
 • Mechanistic structural studies on signaling molecules
• Genetic approaches to hormone action
 • Hormone action and human disease
 • Rationale drug design

Additional Readings on Steroid Hormone Action

• Tsai and O'Malley (1994) Molecular mechanisms of action of steroid/thyroid hormone
• Rosenfeld and Glass (2000) Coregulator codes of transcriptional regulation by nuclear receptors. J
• McKenna and O'Malley (2002) Combinatorial control of gene expression by nuclear receptors and
• Katzenellenbogen et al (2000) Estrogen receptors: selective ligands, partners and distinctive
 Bioessays 24:744.
 Cancer Cell 1:235.
 68:559.
• Chawla et al (2001) Nuclear receptors and lipid physiology: opening the X-files. Science
 294:1867.
 Endocrinol 16:1135.
• Yudt and Cidlowski (2002) The glucocorticoid receptor: coding a diversity of proteins and responses
 57:339.