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ABSTRACT

Steroidogenic factor 1 (SF1) is a member of the NR5A sub-family of nuclear hormone receptors

and is considered a master regulator of reproduction as it regulates a number of genes encoding 

reproductive hormones and enzymes involved in steroid hormone biosynthesis. Like other NR5A

members, SF1 harbors a highly conserved ~30-residue segment called the FTZ-F1 box C-

terminal to the core DNA binding domain (DBD) common to all nuclear receptors and binds to 9 

base-pair DNA sequences as a monomer. Here we describe the solution structure of the SF1

DBD in complex with an atypical sequence in the proximal promoter region of the inhibin-

gene that encodes a subunit of a reproductive hormone. SF1 forms a specific complex with the 

DNA through a bipartite motif binding to the major and minor grooves through the core DBD 

and the N-terminal segment of the FTZ-F1 box, respectively, in a manner previously described 

for two other monomeric receptors, NGFI-B and ERR2. However, unlike these receptors, SF1 

harbors a helix in the C-terminal segment of the FTZ-F1 box that interacts with both the core

DBD and DNA and serves as an important determinant of stability of the complex. We propose

that the FTZ-F1 helix along with the core DBD serves as a platform for interactions with 

coactivators and other DNA-bound factors in the vicinity. 
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INTRODUCTION

Nuclear hormone receptors (NRs) constitute one of the largest families of transcription factors 

and play important roles in metazoan development and cellular homeostasis by regulating a 

number of growth and signal transduction pathways (1, 2). The activity of many NRs is regulated 

by the binding of small lipophilic molecules including steroid hormones, metabolites, lipids, and 

synthetic ligands. Despite sharing considerable similarities both at the sequence and structural

levels, NRs exhibit a high degree of specificity in exerting their physiological effects. While

remarkable progress has been made in the past decade in defining the general principles relating 

to their mechanism of action at the molecular level, the structural basis for specificity remains

poorly understood for many NRs, especially for receptors with no known ligands and/or those 

that bind DNA as monomers (3). 

Steroidogenic factor 1 (SF1/NR5A1) belongs to the NR5A sub-family of nuclear hormone

receptors that bind DNA as monomers and regulate a number of genes essential for normal

reproductive physiology and endocrine function (4, 5). SF1 was originally identified as a

homologue of the Drosophila NR fushi tarazu factor-1 (FTZ-F1/NR5A3) that regulates

segmentation (6, 7). SF1 is expressed in the gonads, adrenals, hypothalamus and pituitary where 

it regulates genes encoding steroidogenic enzymes and hormones including FSH , LH , GSU ,

and MIS. Mouse SF1 knockouts lead to specific developmental defects including the agenesis of

the ovary, testis and adrenals (8, 9). This is in contrast to its closest homologue and member of 

the same sub-family, the liver receptor homologue 1 (LRH1/NR5A2), which is expressed in 

pancreatic, liver and intestinal tissues and regulates the expression of genes involved in 

cholesterol metabolism (10). LRH1 is also expressed abundantly in the ovary and like SF1, is 

proposed to regulate mammalian reproductive function. It also has important roles in early 

development, as LRH1 knockouts are embryonically lethal (11). Recently, both SF1 and LRH1 

have been shown to bind phophotidyl inositol ligands, and lipid binding is required for full 

transcriptional efficacy of these nuclear receptors (12-15). 

Members of the NR5A sub-family share the same domain architecture as other NRs although 

SF1 and FTZ-F1 orthologues lack a transactivation domain N-terminal to the DNA binding

domain (DBD). The ‘core DBD’ shared by all NRs consists of a tandem Cys4-Cys4 zinc-finger 
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motif that is essential for the specific recognition of a canonical six base-pair sequence termed

the hormone response element (HRE; (16-26)). Unique to the NR5A sub-family is a highly 

conserved sequence referred to as the ‘FTZ-F1 box’ located immediately C-terminal to the core

DBD that is indispensable for high-affinity interactions with DNA (Figure 1; (27, 28)). This 

segment bears limited similarity to an analogous region found in other NRs that bind DNA as

monomers including NGFI-B and ERR2. The NR5A members, like these monomeric receptors,

have been proposed to recognize a 9 base-pair sequence comprising a canonical HRE and a 3 

base-pair sequence 5'- to this element. An in vitro selection experiment conducted using FTZ-F1 

led to the identification of high-affinity binding sites that conformed to the consensus sequence 

5'-YCAAGGYCR-3' (where Y = T/C; R = G/A; (29)). In contrast, several of the natural binding 

sites on the proximal promoter regions of target genes for SF1 exhibit significant differences 

from the consensus (Figure 1). Another noteworthy feature of SF1 regulation is that many genes

appear to be regulated in collaboration with proximally-bound, structurally-diverse transcription 

factors including CREB, C/EBP- , Pitx1, GATA-4, EGR-1, -catenin, estrogen receptor, Sox9, 

Sp1 and the E2A family of transcription factors (4).

We had previously shown that SF1 plays a role in ovarian follicular function by regulating

inhibin (30), a heterodimeric glycoprotein hormone that suppresses FSH secretion in the pituitary

(31). We also showed that SF1 activates inhibin-  subunit gene transcription in a synergistic 

manner with the cAMP-responsive transcription factor CREB, a downstream effector of FSH 

action (30). Both SF1 and CREB bind to neighboring atypical elements in the proximal promoter

region of the inhibin-  subunit gene. To understand the molecular and structural basis for this 

synergy and to clarify the mode of DNA binding by SF1 and in particular, the role of the FTZ-F1 

box, we determined the three-dimensional structure of the SF1 DBD in complex with a 15 base-

pair sequence derived from the inhibin-  subunit proximal promoter that we refer to as the SBS 

(SF1 binding site) duplex. 

RESULTS

Multiple constructs of mouse SF1 encompassing the core DBD and the FTZ-F1 box were 

generated, but because of solubility issues, only the shortest construct spanning residues 10–111 

was deemed suitable for structural studies. However, at millimolar concentrations required for
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solution NMR studies, the protein appeared to form soluble aggregates as indicated by the broad

resonance linewidths and poor chemical shift dispersion in the amide region of the 1H NMR

spectrum. In contrast, high-quality NMR spectra characterized by excellent chemical shift

dispersion and adequate sensitivity was obtained for the SF1 DBD-SBS DNA complex,

notwithstanding the atypical nature of the sequence (Figure 1; panels C and D). The complex

was in slow exchange on the NMR timescale and overall, the spectral characteristics were 

comparable to those obtained for another SF1 DBD-DNA complex in which the DNA sequence 

harbored a consensus binding site (Supplementary Figure S1).

Sequence-specific resonance assignments were accomplished using well-established methods

and are essentially complete for the DBD. Severe spectral overlap and resonance line broadening 

for select nucleotides precluded complete assignment of DNA proton resonances. 1H-1H NOESY 

spectra were of sufficient quality to pursue structure determination using a largely automated

approach. An ensemble of sixteen structures consonant with the input restraints including no 

violations >0.5 Å for distance restraints and >5° for torsion angle restraints was deemed suitable

for further analysis (Table 1).

Overall Structure of the SF1 DBD-SBS DNA Complex 

The backbone conformation of the SF1 DBD is defined with reasonable precision by the input 

restraints, but is generally better defined within the core DNA binding domain than in the FTZ-

F1 box segment. The core DBD of SF1 adopts the well-characterized, zinc-stabilized fold found 

in other NRs comprising a short beta-hairpin near the N-terminus and two -helices arranged 

approximately perpendicular to each other separated by a long loop (Figure 2). The N-terminal

half of the FTZ-F1 box immediately following the core DBD adopts a conformation comprising

a 310-helix and a succession of turns akin to those found in the CTEs (carboxy-terminal

extensions) of the monomeric receptors NGFI-B and ERR2 (20, 25). A distinctive feature of the 

FTZ-F1 box is the presence of an additional -helix in the C-terminal half of the segment that we 

designate the FTZ-F1 helix. The SBS DNA duplex conformation is essentially B-form and the

backbone precision is better for those regions in close proximity to the protein than otherwise. 
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The first helix in the core DBD of SF1 docks into the major groove of the DNA and serves as 

the primary recognition module for the atypical HRE in the SBS. The FTZ-F1 box provides a 

secondary recognition element by crossing over to the minor groove and engaging the sequence 

immediately 5' to the HRE. One end of this element is anchored by the FTZ-F1 helix through 

long-range non-covalent interactions.

Intermolecular Interactions between SF1 DBD and the SBS Duplex

Non-covalent interactions stabilizing the SF1 DBD-SBS DNA complex largely mimic the 

general trend observed for other NR-DNA complexes. Figure 3 catalogues the intermolecular

hydrogen bonding and electrostatic interactions that are consistently detected in the majority of 

the structures comprising the NMR ensemble. A Glu-Lys pair consisting of Glu31 and Lys34 

near the N-terminus of the recognition helix (a region widely referred to as the ‘P-box’) makes

base-specific hydrogen bonding interactions with two consecutive G:C base-pairs at the +2 and 

+3 positions in the HRE (Figure 3). These interactions are bolstered by additional hydrogen 

bonds between Lys38 N  and Gua9 N7 (at the +3 position in the HRE) and also between Arg39 

N  and Gua20 O6 (+5 position). Since the terminal groups in the Lys38 and Arg39 side chains

are somewhat disordered, these interactions are not consistently detected in the NMR structures.

An impressive array of non-specific interactions involving main chain amides (Tyr25 and Arg84) 

as well as side chain hydroxyl, imidazole, amino and guanidium groups with backbone

phosphate groups in the DNA are detected (Figure 3). These interactions are especially 

concentrated in a region where residues from the -hairpin, the C-terminus of the recognition 

helix, and the FTZ-F1 box congregate near one strand of the DNA. Similar backbone interactions 

involving two spatially proximal arginines (Arg62 and Arg69) with the other DNA strand are 

also detected. 

There are surprisingly few well-defined, base-specific interactions involving the RGGR 

motif in the FTZ-F1 box in the SF1 DBD-DNA complex (Figure 3). Identical or similar motifs

have been implicated in such interactions in other monomeric NR-DNA structures. This is

attributed to the modest to severe resonance broadening effects associated with residues within

the motif as only a handful of intermolecular NOEs involving the arginine residues were 

detected.  Interestingly, in the atypical SBS sequence found in the inhibin-  promoter, a G:C 
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base-pair replaces an A:T base-pair that would normally make contacts with one of the arginine

side chains (Arg89). 

Packing and Non-Covalent Interactions of the FTZ-F1 Helix 

A unique feature of the SF1 DBD-DNA complex is the presence of an additional helix following 

the RGGR motif. The FTZ-F1 helix, which encompasses residues Phe95 to Gln107, extends 

from one edge of the minor groove to the other and beyond while simultaneously engaging the 

core DBD. The helical axis is almost in the same plane as the A6:T25 base-pair and

approximately parallel to the C1'-C1' vector of this base-pair (Figure 2B).

The side chain conformations in the helix are generally less well-defined than those in the

core of the DBD. However, residues at the N-terminus of the helix including Phe95, Met98 and 

Tyr99 define a mini hydrophobic core that packs against the backbone in the turn region between 

the -strands and also the N-terminal segment of the FTZ-F1 box (Figure 4). The hydroxyl group 

of Tyr99 is within hydrogen bonding distance of backbone donor and acceptor groups in the -

hairpin region of the core DBD. In some structures, it is also in a position to form hydrogen 

bonds with the A6 O3' and G7 phosphate oxygen atoms. Another hydrogen bonding interaction 

that is consistently detected in the NMR structures involves the hydroxyl group of Tyr23 and the 

carboxyl moiety of the Asp102. Poorly defined are electrostatic interactions involving the side 

chains of Lys100 and Arg103 with the backbone phosphate groups of the DNA and those 

between the side chains of Lys106 and Glu13 in the core DBD.

Functional Implications of SF1 DBD Mutations

To assess the contributions of various SF1 DBD residues towards DNA binding and

transactivation, a panel of mutants in the context of the full-length SF1 protein was generated 

and tested in transient transfection assays. Residues in the core DBD, the RGGR motif and the

FTZ-F1 helix were mutated including those that 1) engaged in specific interactions with DNA, 2) 

interacted with the sugar-phosphate backbone in a non-specific manner, 3) were at the protein-

DNA interface but whose interactions with DNA were ambiguous, and 4) were far removed from

the protein-DNA interface. The assays employed a luciferase reporter downstream of a promoter

element from the inhibin-  subunit gene harboring the atypical SBS and were conducted in
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immortalized ovarian granulosa cells (GRMO2). None of the mutants tested impaired the ability

of the inhibin  reporter to respond to forskolin stimulation, indicating that CREB-mediated

transctiption of the gene is not impaired by the mutant SF1 proteins (data not shown). 

Alanine mutations of class 1 residues including Glu31, Lys34, Lys38 and Arg39 significantly 

diminished the transactivation potential of the mutant proteins (Figure 5A, top panel). In 

contrast, the class 2 Lys63Ala and Arg87Ala mutants exhibited robust levels of activation while

the class 4 mutants including Leu80Lys and Met98Ala also shared this trait. The only class 4 

mutant that exhibited greatly diminished transcriptional activity compared to wild-type SF1 was

the Arg101Pro,Asp102Pro double mutant, which was designed to perturb the FTZ-F1 helix. 

Interestingly, alanine mutations of two class 3 residues Arg89 and Arg92, both of which belong 

to the RGGR motif, yielded contrasting results. While the Arg89Ala mutant exhibited robust 

transactivation, the Arg92Ala mutant failed to activate significantly above basal levels. The two 

other class 3 mutants Tyr99Ala and Tyr99Phe, designed to perturb the interactions involving the 

aromatic side chain, also failed to activate transcription significantly over basal levels. It is 

unlikely that the inability or diminished ability of some of these mutants to transactivate is 

explained by rapid protein turnover as Western blot analysis indicated that all the alanine 

substitution mutants, with the exception of the Arg39Ala and Tyr99Ala mutants, appeared to 

express well and at equivalent levels in transfected HeLa cells (Figure 5A, bottom panel). 

To evaluate the contribution of the FTZ-F1 helix towards the stability of the SF1 DBD-DNA 

complex, the transactivation potential of two FLAG-tagged SF1 constructs harboring an internal

deletion spanning residues Pro97 to Ala111 in the FTZ-F1 box (designated SF1 97–111) was 

tested in transient transfection assays. Interestingly, these mutants showed only basal levels of 

activation, while the FLAG-tagged wild-type full-length SF1 proteins showed comparable

activity as the untagged wild-type full-length SF1 (Figure 5B, top panel). Since the mutant

proteins were readily detected in Western blots, it is unlikely that the loss of activity is caused by

rapid protein turnover (Figure 5B, bottom panel). 

Since several mutants targeting residues in the FTZ-F1 helix, including Tyr99Ala, Tyr99Phe, 

Arg101Pro,Asp102Pro, and 97-111 exhibited considerably diminished activity in transcription 
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assays, we sought to test their ability to bind DNA in vitro. Electrophoretic mobility shift assays

were used to monitor DNA binding as a function of concentration over a 30-fold range of added 

protein. A quantitative analysis of the binding affinities, especially for the wild-type SF1 DBD, 

was not possible as the binding isotherms exhibited significant deviations from normal

hyperbolic profiles expected for monomer binding. This is attributed to the protein's tendency to 

aggregate readily over a broad range of solution conditions and precipitate in the presence of 

modest amounts of salt (ca. 0.1 M) and at basic pH. We have therefore sought to compare DNA 

binding activities in qualitative terms. The mobility shift assays were conducted using bacterially

expressed and purified wild-type SF1 DBD and the four FTZ-F1 helix mutants employing

oligonucleotide probes harboring either atypical or consensus SF1 binding sites. The atypical site

contains the inhibin-  subunit sequence used for the structural studies. All four mutants bound to 

the consensus sequence with lower affinity compared to the wild-type protein and in the order 

Arg101Pro,Asp102Pro > Tyr99Phe ~ Tyr99Ala >> 97-111 (Figure 6A). Significantly, binding 

to the atypical sequence was attenuated for all the proteins tested including the wild-type SF1

DBD, but even more so for all the mutants (Figure 6B). These observations are in complete

agreement with the results from transcriptional assays that were also conducted with the atypical

sequence (Figure 5). 

DISCUSSION

Despite sharing extensive sequence similarity, nuclear hormone receptors exhibit significant 

diversity in their modes of sequence-specific DNA recognition. High-resolution structures of 

about a dozen different NR DBD-DNA complexes confirm the essential ‘nucleating’ role of the 

core DBD in recognizing the canonical HRE (16-26). However, this alone is insufficient for 

high-affinity interactions. Oligomerization and cooperativity involving segments within the core 

DBD and/or the CTE are key for assuring high-affinity NR-DNA interactions. The CTE also

plays an important role in monomeric NR-DNA interactions by extending the protein-DNA 

interface to the minor groove. However, similarities and important variations are beginning to 

emerge between various monomeric NR DBD-DNA complexes.
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Comparison with Other NR DBD-DNA Interactions 

The DNA binding domain of SF1 shares grossly similar features both at the backbone and the 

side chain levels with the NGFI-B and ERR2 DBDs (20, 25). Indeed, a representative structure 

of SF1 DBD superimposes with the NGFI-B and ERR2 DBDs leading up to a few residues past

the 310-helix with backbone RMSDs in the 1.2 Å range. Differences in the trajectories of the 

respective backbones beyond this point become more readily apparent but are particularly 

pronounced past the RGGR/RGR motifs. Interestingly, residues in the segment C-terminal to the 

RGGR motif in both SF1 and ERR2 engage the core DBD whereas a comparable interaction is 

completely absent in NGFI-B, which harbors an alternative RGR motif. Another noteworthy 

parallel between SF1 and ERR2 is the structural role played by a tyrosine residue (Tyr99 and 

Tyr185, respectively) in anchoring the C-terminal segment to the core DBD. Tyr99 is seven 

residues removed from the RGGR motif whereas the functionally equivalent Tyr185 is only 

three residues C-terminal to the RGGR motif in the respective proteins. However, unlike the side 

chain of Tyr185 in the ERR2 DBD-DNA complex, the side chain of Tyr99 in the SF1 DBD-

DNA complex is closer to and most likely interacts with the sugar-phosphate backbone of the 

DNA (Figure 4). 

Recognition of an Atypical Physiologically Relevant Sequence 

An interesting aspect of the DNA sequence employed in this study is that it is a lower-affinity 

target for SF1. Many physiologically important target genes harbor such atypical SF1 binding 

sites (Figure 1D). The low-affinity SF1 binding of the inhibin  subunit SBS sequence is 

confirmed by the results of our comparative DNA binding assays conducted with this same 

sequence and a sequence conforming to the consensus SF1 binding sequence (Figure 6). The 

replacement of an A:T base-pair at the +1 position by a G:C base-pair appears to have an effect

on the structure and internal dynamics of the complex. For example, the guanine amino group,

through steric clashes, likely precludes the side chain of Arg89 from making base-specific 

contacts. The equivalent arginine residue, Arg179 in ERR2 was implicated in hydrogen bonding 

interactions with the thymine O2 moiety of the A:T base-pair at the +1 position (25). The sub-

optimal context of the G:C base-pair in the SF1 DBD-DNA complex likely contributes to some

of the severe resonance broadening effects associated with the residues in this region including
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the RGGR motif in the DBD. Future NMR studies of a consensus SBS-SF1 DBD complex

should help clarify this further.

Notwithstanding the sub-optimal nature of the DNA sequence, the SF1 DBD appears to form

a specific complex as residues implicated in making base-specific contacts by the structural

analysis strongly diminish the transactivation potential of SF1 in transfection assays (Figure 5). 

Interestingly, the latter studies also suggest a non-essential role for Arg89 in the RGGR motif, at 

least vis-à-vis the recognition of the atypical SBS. By contrast, Arg92 appears to play an

important role in this regard.

Role of the FTZ-F1 Helix in Complex Stability and Transcription Factor Interactions

Perhaps the most distinctive feature of the SF1 DBD is the presence of an -helix at the C-

terminus of the domain. Although an -helix in the CTE has also been reported for the thyroid 

hormone and vitamin D receptors (18, 23), the packing and relative orientation of the helix with

respect to the core DBD and DNA are completely different. In the SF1 DBD-DNA complex,

residues in the FTZ-F1 helix not only engage in long-range non-covalent interactions with the 

core DBD, a few of them also are in a position to make non-specific contacts with the DNA. All

of these interacting residues are either invariant or highly conserved in the NR5A sub-family

(Figure 1B). The results from transient transfection as well as DNA binding assays confirm the

important role of the helix towards complex stability as perturbation of the helix through proline 

substitutions or deletion of the entire helix adversely affects the normal function of SF1 (Figures 

5 and 6). The transcription and DNA binding assays also highlight the crucial role of the tyrosine 

residue (Tyr99) in the helix, and particularly its hydroxyl moiety, as mutation to phenylalanine or 

alanine negatively affects SF1 function.  Finally, it is plausible that the FTZ-F1 helix is a 

particularly important determinant in allowing SF1 to effectively bind to and activate a broad 

range of target genes that exhibit substantial variability in the SF1 recognition sequence (cf. 

Figure 6A with 6B). 

Interestingly, SF1 and FTZ-F1 DBD mutants lacking the FTZ-F1 helix region have been 

reported to bind consensus DNA sequences with similar affinities as the wild-type proteins (27, 

28). The apparent discrepancy with our findings is not clear, but one likely explanation is that the
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assays were performed at concentrations much higher than the dissociation constants of the

respective complexes, effectively precluding clear discrimination between their binding

affinities.

The FTZ-F1 box has been proposed to play a role in NR5A-mediated transactivation by 

serving as a site for tethering other transcription factors. A particularly well-studied example is a 

transcriptional coactivator called the multi-protein bridging factor 1 (MBF1) that interacts with 

multiple factors including the TATA binding protein (32-35). The interaction between NR5A

proteins and MBF1 as well as MBF1-dependent coactivation relies on an intact FTZ-F1 helix 

and also on the presence of basic residues within the helix (33). These results when considered in

light of the important role performed by the helix in stabilizing the structure of the DBD-DNA 

complex suggest that a potential MBF1 interacting surface could involve: 1) the FTZ-F1 helix

itself as a direct and exclusive target, 2) a site completely distinct from the FTZ-F1 helix that

nonetheless relies on the helix for proper folding of the DBD or 3) a site that partially overlaps 

with the FTZ-F1 helix. We note that the surface adjacent to the FTZ-F1 helix of SF1 DBD is 

dominated by hydrophobic residues (Figure 7) and could be a site for interactions with MBF1 

and possibly other transcription factors. Since MBF1 has also been proposed to interact with the

basic region of basic-leucine zipper transcription factors, one model for the observed synergy 

between SF1 and CREB in activating inhibin-  subunit gene transcription could result from the

stabilization of a multi-protein-DNA complex with MBF1 serving as a molecular adapter linking 

these factors through protein-protein interactions.

Note added in proof: After the submission of this manuscript, the crystal structure of human

LRH1 in complex with DNA has been reported (36). The principal conclusions from that study 

on a related NR5A protein are in accord with those described in this paper. It appears that ERR2, 

SF1, and LRH1 comprise a growing list of monomeric receptors, with the exception of NGFI-B, 

that rely on long range packing interactions between residues in the CTE and the core DBD. 
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MATERIALS AND METHODS

Expression and Purification of SF1 DBD

The coding sequence of the mouse SF1 DNA binding domain (DBD) corresponding to amino

acids 10–111 was amplified by PCR and inserted into the pMCSG7 expression vector (37). E.

coli BL21(DE3) cells (Novagen) containing the vector were grown at 37 °C in M9 minimal

media supplemented with 50 M ZnCl2. The growth temperature was shifted to 20 °C when the

OD600 nm reached ~0.7. Protein expression was induced using 1 mM isopropyl- -D-

thiogalactopyranoside and the cells were harvested 16 h thereafter. Cell pellets were suspended

in 20 mM sodium phosphate buffer (pH 7.2) containing 500 mM NaCl, 50 M ZnCl2, 2 mM

Tris(2-carboxyethyl) phosphine, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 M leupeptin, 

1 mM pepstatin, and 0.1% Triton X-100. The cells were lysed via sonication and the protein was 

purified from both the soluble and insoluble (solubilized in 8 M urea) fractions using His-Select

Nickel Affinity Gel (Sigma).  Bound proteins were eluted with buffer containing 500 mM 

imidazole. SF1 DBD-containing fractions were further purified using reversed-phase high 

pressure liquid chromatography (HPLC) using a C18 column (Vydac) and a mobile phase 

comprising 80% acetonitrile and 0.1% trifluoroacetic acid and lyophilized. SF1-DBD samples

uniformly labeled with 15N and/or 13C isotopes were produced as described above, except that 

cells were grown in M9 minimal media containing 15N-ammonium sulfate and/or 13C-D-glucose

(Spectra Stable Isotopes), respectively. The identity of the protein as well as the extent of isotope 

enrichment (typically, 15N >98% and 13C >97%) was confirmed by electrospray ionization mass

spectrometry.

Production and Purification of DNA Oligomers 

Complementary single-stranded oligodeoxyribonucleotides harboring the SF1 DBD binding site 

(SBS) in the inhibin-  promoter were purchased from Trilink Biotechnologies Inc. with an intact 

5’-dimethoxytrityl (DMT) group. Sequences with the DMT group were isolated via reversed-

phase HPLC (Vydac C4 column) using a mobile phase comprising 80% acetonitrile and 0.1 M 

triethylammonium acetate buffer (pH 6.5). The DMT group was removed using 80% acetic acid

and the oligomers purified by another round of reversed-phase HPLC. Purified single-stranded 

oligomers were combined, lyophilized, redissolved in water, and desalted using a Sephadex G25 

column (GE Healthcare). The complementary strands were combined in an equimolar ratio, 
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based on concentrations determined from A260 nm measurements, heated to 65 C and annealed. 

The 1:1 stoichiometry of the two strands was verified by recording 1H NMR spectra.

SF1 DBD-SBS Complex Generation and NMR Sample Preparation 

Lyophilized SF1 DBD and SBS duplex were dissolved separately in 10 mM Tris-d11 acetate-d4

NMR buffer (pH 6.0) containing 50 M ZnCl2 and 2 mM dithiothreitol-d10. Equimolar

complexes of 15N- or 15N,13C-labeled SF1 DBD and SBS were generated by titrating the

interacting components at 40 M concentration. The progress of the titration was followed by 

monitoring the disappearance of free SBS resonances in the imino proton region of the 1H NMR

spectrum. The samples were concentrated by ultrafiltration using a Centriprep-3 to 

approximately 0.5–1 mM for NMR experiments.  During this process 0.2% (w/v) NaN3 and 1% 

(v/v) glycerol-d8 were added for conferring additional stability to the sample. 

NMR Spectroscopy and Structure Determination

All NMR data were acquired at 35 °C on a Varian Inova 600 MHz spectrometer. NMR data 

processing and analyses were performed using an in-house modified version of Felix98 

(Accelrys; (38)). Backbone and side chain 1H, 15N, and 13C resonances for SF1 DBD were 

assigned from three-dimensional (3D) HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH, 

C(CO)NH-TOCSY, H(CCO)NH-TOCSY, HNCO, HCACO, 15N-edited TOCSY, HCCH-COSY,

and HCCH-TOCSY spectra (39, 40). Aromatic resonances were assigned from 2D 

(HB)CB(CGCDCE)HD and (HB)CB(CGCDCE)HE spectra (41). SBS DNA proton resonances

were assigned from 2D 15N,13C-double-half-filtered NOESY and TOCSY spectra (42). 

NMR structure determination 

Structures were calculated using ARIA v1.2 in combination with CNS (43, 44). NOE restraints 

were obtained from 3D 15N-edited NOESY (mixing time, m= 80 ms), 3D aliphatic and aromatic
13C-edited NOESY ( m= 60 and 80 ms, respectively), 3D 13C-filtered, 13C-edited NOESY ( m=

120 ms; (45)), and 2D 15N,13C-double-half-filtered NOESY ( m= 120 ms) spectra recorded in 

H2O and D2O. Intermolecular NOEs were assigned manually and were calibrated indirectly by

calculating a scaling factor for the intensities of well-resolved peaks in 13C-edited NOESY and 
13C-filtered, 13C-edited NOESY spectra. These NOEs were assigned upper bounds of 3.6, 4.5,
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5.4, and 6 Å. All other NOEs were calibrated automatically and assigned iteratively by ARIA. 

All NOEs as well as resonance assignments were checked manually for errors after every

refinement cycle. 

Polypeptide backbone  and  torsion angle restraints were derived from an analysis of 

H , C , C , C' and backbone 15N chemical shifts using TALOS (46). Nucleic acid backbone , ,

,  and  torsion angles were restrained to broad ranges found in canonical A- and B-form DNA 

(47). The  and  torsion angles were also loosely restrained to the anti and C2'-endo ranges, 

respectively. Hydrogen bonding distance restraints between donor-acceptor pairs were included 

to maintain Watson-Crick base pairing. Analogous distance restraints were introduced within 

segments of the DBD deemed to be helical from chemical shift and NOE analyses. Metal-sulfur

and sulfur-sulfur distance and torsion angle restraints were included for maintaining the 

tetrahedral coordination geometry of Zn2+ ions.

Structures were calculated from extended backbone conformations as starting models. 

The Cartesian dynamics option was used for a two-stage simulated annealing (SA) protocol with 

initial temperatures set to 4000 and 2000 K and final force constants for the distance and torsion 

angle restraints set to 50 kcal mol-1 Å-2 and 200 kcal mol-1 rad-2, respectively. NOEs were 

assigned following the default ARIA nine-iteration scheme. Forty structures with the lowest

restraint energies were subjected to another iteration of SA starting at 500 K. The simulations

were conducted with a shell of explicit solvent and with the inclusion of electrostatics and van

der Waals terms in the potential energy function. In all but the final iteration, the DNA was

harmonically restrained to standard B-form conformation. Sixteen structures with the lowest

restraint energies, restraint violations, and RMS deviations from ideal covalent geometry were

selected for further analysis. The quality of the final structures was analyzed using CNS (44) and 

PROCHECK (48), non-covalent interactions were analyzed using MONSTER (49) and 

PROMOTIF (50) and molecular images were generated using CHIMERA (51) and GRASP (52).

Generation of Mutants 

Mutants of full-length SF1 or SF1 DBD were engineered using the QuikChange site-directed 

mutagenesis kit (Stratagene). FLAG-tagged, full-length SF1 wild-type and 97-111 mutant
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constructs were generated by inserting the coding sequence for DYKDDDDK either immediately 

following the start codon or immediately prior to the stop codon. All mutations were confirmed

by DNA sequencing. Mutant SF1 DBD proteins were expressed in bacteria and purified using 

analogous approaches used for producing wild-type DBD except for the omission of the final 

reversed-phase HPLC step. 

Transient Transfection and Luciferase Assays 

GRMO2 cells were cultured as previously described (53, 54) in HDTIS buffer {1:1 mixture of 

Ham’s F-12 medium (Invitrogen Life Technologies) and DMEM, 5 g/ml transferrin, 10 g/ml

insulin, and 5 nM sodium selenite} supplemented with 2% fetal bovine serum and sodium 

pyruvate (100 mg/l) in a humidified incubator at 37 °C and 5% CO2. The cells were transfected 

with a –547 Inhibin- -Luc reporter DNA (500 ng) and full-length SF1 wild-type or mutant

expression constructs (10 ng) for each well of a 12-well culture dish (55, 56). The DNAs were 

incubated at room temperature with lipofection reagent for 20 min in OptiMEM. Cells were 

washed with phosphate buffered saline (PBS), incubated with the DNA-lipid mixture for 6 h, 

then maintained in fresh HDTIS containing 2% fetal bovine serum for 14–16 h. Cells were 

washed twice with PBS and lysed on ice in lysis buffer (25 mM HEPES (pH 7.8), 15 mM 

MgSO4, 1 mM DTT, and 0.1% Triton X-100). Cell lysates (100 l) were added to 400 l

reaction buffer (25 mM HEPES, pH 7.8, 15 mM MgSO4, 5 mM ATP, 1 g/ml BSA, and 1 mM

DTT) containing 100 l 1 mM luciferin (Analytical Bioluminescence) and the emitted

luminescence was measured for 10 s using an Analytical Bioluminescence Monolight 2010 

Luminometer (57). Relative light units were normalized for total protein content. Protein 

concentrations were estimated via a Bradford colorimetric assay (Bio-Rad) using 5–8 l of cell 

lysate.

Preparation of Whole Cell Protein Extracts and Western Blot Analysis 

HeLaT4 cells were cultured in DMEM supplemented with 5% fetal bovine serum in a humidified

incubator at 37 °C and 5% CO2. The vaccinia T7 RNA polymerase hybrid expression system

was used to overexpress the full-length SF1 wild-type and mutant proteins from the vector 

pCMX (58). Cultured cells were washed with PBS, centrifuged, resuspended in lysis buffer (50 

mM Tris, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM
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PMSF, 1 g/ml each of antipain, aprotinin, leupeptin, and pepstatin, and 1 mM NaF), incubated

on ice and lysed by two freeze-thaw cycles. Lysates were centrifuged and the supernatant was 

frozen at –80 °C. Soluble proteins in the lysate were resolved by SDS-PAGE, transferred to 

nitrocellulose, blocked with 3% BSA, incubated with a primary anti-SF1 antibody (Upstate

catalogue #06-431) at 1 g/ml or anti-FLAG antibody (Sigma F-3165) at 0.17 g/ml for 2 h at

room temperature, washed with TBS, incubated for 1 h at room temperature with donkey anti-

rabbit antibody (for the primary anti-SF1 antibody) conjugated to horseradish peroxidase 

(1:10,000; Amersham Biosciences) or with sheep anti-mouse antibody (for the primary anti-

FLAG antibody) conjugated to horseradish peroxidase (1:6000, Amersham Biosciences) in 10%

dry milk in TBS with gentle rocking. The blot was washed with TBS containing 0.1% Tween 

and the antibody-antigen complexes were visualized using an enhanced chemiluminescence

system (ECL Plus Kit, Amersham Biosciences). 

Electrophoretic Mobility Shift Assays

Complementary oligonucleotides corresponding to –141 to –118 of the inhibin-  subunit gene 

(designated atypical SBS = 5'-TAAGGCTCAGGGCCACAGACATCTGCGTCAGAGATA) or

to the same region but containing a consensus SF1 binding site (consensus SBS = 5'-

TAAGGCTCAAGGTCACAGACATCTGACGTCAGAGATA) were annealed, 5'-end-labeled

with 32P-ATP, and gel-purified on a 10% polyacrylamide 1x TBE gel. Gels were exposed to film 

and the labeled oligonucleotides excised, eluted with fresh 0.5 M ammonium acetate buffer 

containing 1 mM EDTA, and precipitated with ethanol. Bacterially produced wild-type and 

mutant SF1 DBD proteins were each mixed with 15,000 cpm DNA probe and incubated for 10 

minutes at room temperature in gel shift buffer (10 mM Tris, pH 7.7, 1 mM MgCl2, 1 mM DTT

and 2 g poly dI:dC). Protein concentrations were measured spectrophotometrically (59). The 

solubility profile of each protein was monitored over the course of several days both 

spectrophotometrically as well as by running SDS-PAGE gels and visualizing the bands with 

Coomassie staining. The reactions were separated on a 5% polyacrylamide 1x TBE gel, dried,

and exposed to autoradiographic film and/or exposed to a phosphoscreen. 

Coordinates

 17 



The atomic coordinates for the ensemble of NMR structures of the SF1 DBD-SBS DNA 

complex will be deposited with the RCSB PDB. 
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FIGURE LEGENDS

Figure 1. Analysis of the protein and nucleotide sequences used in this study. A, Amino acid 

sequence corresponding to the Cys4-Cys4 zinc finger DNA binding domain of mouse SF1. The 

locations of the highly conserved core DBD shared by nuclear hormone receptors as well as the

FTZ-F1 box unique to the NR5A sub-family are indicated. SF1 residues found in regular 

secondary structural elements including -helices, 310-helices and -strands in the solution 

structure are colored in orange, green and magenta, respectively. B, Multiple sequence alignment

of the 33-residue FTZ-F1 box found in SF1 homologues. Equivalent ‘C-terminal extensions’ or 

CTEs of other structurally characterized receptors are included for comparison. Identical residues 

are highlighted. Species abbreviations: Hs: Homo sapiens; Mm: Mus musculus; Dm: Drosophila

melanogaster; Bm: Bombyx mori; Dr: Danio rerio; Ce: Caenorhabditis elegans; Rn: Rattus

norvegicus. C, The upstream promoter region of the mouse inhibin-  subunit gene

encompassing the SF1 binding site (SBS) and the cyclic AMP response element (CRE). 

Numbering is relative to the transcriptional start site. The 15 base-pair sequence used for the 

NMR studies is shown in the bottom panel. D, SF1 recognizes a broad range of nucleic acid 

sequences in vivo. A multiple sequence alignment of experimentally-characterized SF1 binding 

sites in the regulatory regions of diverse genes. The proteins encoded by the genes along with the 

species (same abbreviations as above) in which they are found are identified. Sequence 

conservation is captured in the form of a logo and is contrasted with the consensus high-affinity 

binding sequence from an in vitro selection procedure (Y=pyrimidine; R=purine). 

Figure 2. Cross-eyed stereographic views of the solution structure of the SF1 DBD-SBS DNA 

complex. A, A best-fit superposition of the backbone atoms in the ensemble of 16 structures 

highlighting the precision with which the various segments of the complex are determined by the 

NMR data. The polypeptide (beige) and nucleic acid (magenta) backbones are drawn as 

smoothed splines while the zinc atoms are shown as spheres (cyan). B, A representative structure

from the ensemble illustrating the location of the various secondary structural elements. Bases in 

the SBS duplex are shown in a stick representation.

Figure 3. A catalog of all intermolecular hydrogen bonding (blue) and electrostatic (green) 

interactions in the SF1 DBD-SBS DNA complex that are observed in the majority of structures 
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in the NMR ensemble. The heavy atoms involved in these pairwise interactions are shown while

the numbers in parentheses indicate the number of structures in the ensemble in which the 

interaction is detected. For hydrogen bonding interactions, donors and acceptors are

distinguished by the direction of the arrow. Salt bridges are shown in cyan. 

Figure 4. Packing interactions involving the C-terminal helix of SF1 DBD with the core DNA 

binding domain and the N-terminal region of the FTZ-F1 box. A, An ensemble-wide, all-atom 

best-fit superposition of selected residues in the SF1 DBD emphasizing the precision with which

the side chain conformations are defined by the NMR data. B, The corresponding backbone and 

side chains of a representative structure from the ensemble are shown along with nucleotides in 

close proximity to Tyr99. 

Figure 5. Effects of mutations in the DNA binding domain on the transactivation potential of 

SF1. A, Transient transfection assays conducted in GRMO2 cells using wild-type and mutant

full-length SF1 and LRH1 proteins and a luciferase reporter gene located downstream of a 

promoter element (–547 to +63) from the inhibin-  subunit gene (top panel). The fold-activation

was computed relative to basal reporter activity. Error bars represent the standard error of 

measurements (n = 6–22). Western blot analysis of the wild-type and mutant proteins expressed 

in HeLa cells and probed with an anti-SF1 antibody after SDS-PAGE separation. The bands 

denoted by asterisks likely correspond to degradation products. B, Transient transfection assays 

conducted in GRMO2 cells using wild-type full-length SF1 and FLAG-tagged wild-type and 

mutant SF1 constructs and using the same reporter as in A.  Error bars represent the standard

error of measurements (n = 4).  Western blot analysis of the corresponding proteins expressed in 

HeLa cells and probed with an anti-FLAG antibody after SDS-PAGE separation. 

Figure 6. Analysis of the stabilities of a panel of SF1 DBD-DNA complexes. A, Electrophoretic 

mobility shift assays (EMSAs) conducted as a function of increasing concentrations of wild-type

and mutant SF1 DBD with an oligonucleotide probe harboring a consensus SF1 binding site. The 

proteins used in these assays were expressed in bacteria, purified, and rigorously quantified 

before being employed in the binding assays. B, Analogous EMSAs conducted using the same

proteins, but with an atypical SBS. 
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Figure 7. A hydrophobic patch in the vicinity of the FTZ-F1 box helix of SF1 DBD as a 

potential platform for the assembly of additional factors. Two views of the protein-DNA 

complex with the DBD rendered as a molecular surface and the DNA drawn in a stick 

representation. Hydrophobic regions (Ala, Cys, Phe, Ile, Leu, Met, Pro, Thr, Val, Trp, and Tyr) 

of the surface are colored yellow while the hydrophilic regions (Asp, Glu, Gly, His, Lys, Asn, 

Gln, Arg, and Ser) are colored cyan. The surface is rendered semi-transparently so that the 

polypeptide backbone can be seen. The location of the FTZ-F1 helix is indicated. 
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Table 1. NMR Structure Determination Statistics 

RESTRAINT STATISTICS

Distance restraints 

Unambiguous NOE-based restraints 2263
Intraresidue 1111
Sequential (| i – j | = 1) 530
Medium-range (1 < | i – j |  4) 228
Intramolecular long-range (| i – j | > 4) 335
Intermolecular 59

Ambiguous NOE-based restraints 532
Intramolecular NOE-based restraints 297 DNA, 2439 protein 
Hydrogen bonding restraints 118
Metal coordination restraints 20

Torsion angle restraints 

Protein backbone  and  restraints 116
DNA backbone and glycosidic restraints 200
Tetrahedral metal coordination restraints 2

STRUCTURE QUALITY OF NMR ENSEMBLE

Restraint satisfaction

RMS differences for distance restraints 0.015 ± 0.000 Å 
RMS differences for torsion angle restraints 0.235° ± 0.013° 

Deviations from ideal covalent geometry

Bond lengths 0.003 ± 0.000 Å 
Bond angles 0.439° ± 0.003° 
Impropers 0.963° ± 0.012° 

Ramachandran plot statisticsa

Residues in most favored regions 80.8%
Residues in additionally allowed and generously allowed regions 17.2%
Residues in disallowed regions 2.0%

AVERAGE ATOMIC RMSDS FROM THE AVERAGE STRUCTURE

All atomsa 2.01 Å
All atoms except residues at chain terminib 1.62 Å
Backbone atoms (N, C , C', P, O5', C5', C4', C3', O3' )

All residuesa 1.64 Å
All residues except residues at chain terminib 1.17 Å
Residues in the core DBDc and 9 base-pair SBS 0.98 Å 
Residues in the core DBDc 0.67 Å 

a: excluding 23 residues in the non-native sequence N-terminal to the SF1 DBD 
b: excludes the three terminal base pairs flanking the SBS and residues 10–12, 107–111 of SF1 
c: core DBD comprises residues 13–78 of SF1 
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