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AIM2 recognizes cytosolic dsDNA and forms a
caspase-1-activating inflammasome with ASC
Veit Hornung1,2, Andrea Ablasser1,2, Marie Charrel-Dennis1, Franz Bauernfeind1,2, Gabor Horvath1,
Daniel. R. Caffrey3, Eicke Latz1* & Katherine A. Fitzgerald1*

The innate immune system senses nucleic acids by germline-
encoded pattern recognition receptors. RNA is sensed by Toll-like
receptor members TLR3, TLR7 and TLR8, or by the RNA helicases
RIG-I (also known as DDX58) and MDA-5 (IFIH1)1. Little is
known about sensors for cytoplasmic DNA that trigger antiviral
and/or inflammatory responses2–6. The best characterized of these
responses involves activation of the TANK-binding kinase
(TBK1)–interferon regulatory factor 3 (IRF3) signalling axis to
trigger transcriptional induction of type I interferon genes2,3. A
second, less well-defined pathway leads to the activation of an
‘inflammasome’ that, via caspase-1, controls the catalytic cleavage
of the pro-forms of the cytokines IL1b and IL18 (refs 6, 7). Using
mouse and human cells, here we identify the PYHIN (pyrin and
HIN domain-containing protein)8 family member absent in mel-
anoma 2 (AIM2) as a receptor for cytosolic DNA, which regulates
caspase-1. The HIN200 domain of AIM2 binds to DNA, whereas
the pyrin domain (but not that of the other PYHIN family mem-
bers) associates with the adaptor molecule ASC (apoptosis-assoc-
iated speck-like protein containing a caspase activation and
recruitment domain) to activate both NF-kB and caspase-1.
Knockdown of Aim2 abrogates caspase-1 activation in response
to cytoplasmic double-stranded DNA and the double-stranded
DNA vaccinia virus. Collectively, these observations identify
AIM2 as a new receptor for cytoplasmic DNA, which forms an
inflammasome with the ligand and ASC to activate caspase-1.

Our current understanding of the mechanisms sensing cytoplas-
mic DNA is limited9. A candidate receptor called DAI (DNA-depend-
ent activator of interferon (IFN)-regulatory factors) has been
implicated in the DNA-induced type I IFN pathway4. The NLR family
member NLRP3 has also been shown to activate caspase-1 in res-
ponse to internalized adenoviral DNA6. Caspase-1 activation in res-
ponse to transfected bacterial, viral, mammalian or synthetic DNA,
however, does not involve NLRP3, although the adaptor molecule
ASC is required6,7.

We proposed that an upstream activator of this double-stranded
DNA (dsDNA)-activated ASC pathway would contain a pyrin domain
(PYD) for homotypic interaction with ASC, and at least one other
domain for direct binding to DNA or for association with an upstream
receptor. In addition to NLRP3 (ref. 10), NLRP6 (ref. 11) and NLRP12
(ref. 12) have previously been shown to associate with ASC. Although
ASC-deficient macrophages failed to activate caspase-1 and trigger
IL1b release in response to poly(dA-dT) N poly(dA-dT) (hereafter
referred to as poly(dA:dT))2, macrophages lacking NLRP3, NLRP6
and NLRP12 responded normally (Fig. 1a). Surprisingly, we found
that macrophages lacking ASC produced higher levels of IFNb and
IL6 in response to poly(dA:dT), which was not observed in cells

lacking NLRP3, the IL1 receptor, or to a lesser extent caspase-1
(Supplementary Fig. 1a–d). Poly(dA:dT)-induced cell death also
occurred in an ASC-dependent manner (Supplementary Fig. 1e, f).
We speculate that the increased cytokine production in ASC-deficient
cells relates to their resistance to poly(dA:dT)-induced cell death. In
addition to poly(dA:dT), dsDNA from natural sources activated cas-
pase-1 cleavage (Supplementary Fig. 2a, b). In contrast, a small immu-
nostimulatory oligonucleotide3, long single-stranded DNA (ssDNA;
poly(dI)), transfected dsRNA or the ssRNA virus Sendai virus failed
to trigger this response in Nlrp3-deficient macrophages (Supple-
mentary Fig. 2c).

Searching the PFAM database13 we identified several PYD-domain
containing proteins, which also contained a HIN200 domain, prev-
iously shown to bind DNA14,. In humans, the HIN200 family consists
of four members15: IFIX (also known as PYHIN1)16, IFI16 (ref. 17),
MNDA18 and AIM2 (ref. 19). A multiple-sequence alignment of PYD
domains from these proteins with PYD domains from some of the
NLR proteins is shown in Fig. 1b. Sequence analysis of IFIX, IFI16
and MNDA predicted their nuclear localization, in contrast to AIM2,
which was predicted to be cytosolic (Fig. 1c, bottom panel).
Consistent with these predictions, fluorescent protein chimaeras of
IFIX, IFI16 and MNDA localized to the nucleus, whereas AIM2 was
almost exclusively cytoplasmic (Fig. 1d).

To study the possibility that these PYHIN proteins associated with
ASC, we generated carboxy-terminally tagged PYD–CFP (cyan fluor-
escent protein)-domain fusions (which lacked the putative nuclear
localization sequences identified above). Indeed, all of the PYD–CFP
fusions were localized to the cytoplasm (Supplementary Fig. 3). To
test whether induced clustering of the PYD–CFP fusions led to asso-
ciation with ASC–YFP (yellow fluorescent protein), we used a human
embryonic kidney 293 cell line that stably expressed ASC–YFP at low
enough levels to be polydispersed throughout the cytoplasm (Fig. 2a,
mock). Indeed, overexpression of the NLRP3–CFP-tagged PYD
domain led to the formation of large cytosolic aggregates, which
co-aggregated with ASC–YFP (Fig. 2a). Notably, in most transfected
cells, extensive intracellular co-localization with ASC–YFP was
observed with a complete loss of the cytoplasmic distribution of
ASC–YFP10,11,20. Of all the PYHIN-PYD proteins tested, only AIM2-
PYD led to complex formation with ASC (Fig. 2a, b and
Supplementary Fig. 4). Similar results were obtained with full-length
AIM2–CFP but not with full-length IFIX, IFI16 or MNDA, which were
all localized to the nucleus (Fig. 2a, b and Supplementary Fig. 5a, b).
Additionally, only AIM2-PYD and NLRP3-PYD were found to bind
haemagglutinin (HA)-tagged ASC in co-immunoprecipitation studies
(Fig. 2c). Furthermore, endogenous ASC associated with endogenous
AIM2, but not with IFI16 in primed THP-1 cells (Fig. 2d).
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Figure 2 | AIM2 interacts with ASC. a, ASC–YFP-expressing cells (green)
were transfected as indicated and imaged by confocal microscopy. Original
magnification, 3150. AFU, arbitrary fluorescent units. b, The fluorescence
intensities of green (ASC–YFP) and red (PYD–CFP) channels were
quantified along the white lines in a and the percentage of ASC–YFP speckles
was calculated. c, 293T cells transfected with HA–ASC and CFP-tagged
constructs as in a were immunoprecipitated (IP) with an anti-HA antibody

and immunoblotted (IB) as indicated. d, ASC was immunoprecipitated from
Sendai-virus-primed THP-1 cells, and ASC, IFI16 and AIM2 were examined
by immunoblotting. The band above the AIM2 band in the ASC
immunoprecipitation corresponds to the heavy chain of the anti-ASC
antibody. e, NF-kB luciferase reporter gene activity was measured on
transfection with the indicated plasmids. Data are representative of one
experiment out of three (a–d) or out of two (e). Error bars, s.d.
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Figure 1 | Poly(dA:dT)-induced inflammasome activation. a, LPS-primed
macrophages from wild type or inflammasome-deficient mice were
stimulated as indicated and supernatants were examined for IL1b by ELISA
or for cleaved caspase-1 by immunoblot. Error bars represent s.d. b, A
multiple-sequence alignment of human PYHIN and select NLR PYD
domains. c, Domain structures of human PYHINs, with predicted nuclear

localization signals and subcellular localizations (bottom panel). aa, amino
acids; NLS, nuclear localization sequence. d, Subcellular localization of CFP-
tagged IFIX, IFI16, MNDA, AIM2 or NLRP3 (all green) in 293T cells.
Fluorescent cholera-toxin-stained membranes (blue) and DRAQ5-stained
nuclei (red). Original magnification, 3150. Data from one experiment of
three is shown (a, d).
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To examine the functional relevance of AIM2–ASC complex
formation, we examined NF-kB reporter gene activity in cells over-
expressing the PYHIN-PYD proteins in the presence of ASC. Only
NLRP3-PYD and AIM2-PYD led to potent NF-kB activation
(Fig. 2e). The effect of full-length AIM2 was even more marked
(Fig. 2e, bottom panel). The full-length versions of IFIX, IFI16 and
MNDA failed to activate NF-kB (Supplementary Fig. 5c). ASC was
absolutely required, because no substantial NF-kB reporter activity
was observed in cells not transfected with ASC. No substantial activa-
tion of the IFNb promoter reporter gene was observed with any of the
PYHIN family members (Supplementary Fig. 6).

We next examined whether the AIM2–ASC complex could lead to
the formation of a functional inflammasome complex and caspase-1-
dependent maturation of pro-IL1b. We used a transient transfection
assay overexpressing the respective proteins of interest in the pres-
ence of ASC, caspase-1 and Flag-tagged pro-IL1b in 293T cells and
monitored the cleavage of pro-IL1b by immunoblotting. Among the
PYD proteins tested, only NLRP3-PYD and AIM2-PYD induced
maturation of pro-IL1b, when ASC and caspase-1 were co-expressed
(Fig. 3a). Full-length AIM2 was even more potent than AIM2-PYD
(Fig. 3a, lower panel). Neither the PYD domain nor the full-length
versions of IFIX, IFI16 or MNDA induced IL1b cleavage
(Supplementary Fig. 7).

To study the role of AIM2 in cells with a functional poly(dA:dT)-
triggered or dsDNA-virus-induced inflammasome complex, we used
lentiviruses encoding short hairpin RNAs (shRNAs) to knock down
Aim2 in immortalized murine macrophage cell lines (B6-MCLs or
N3-KO-MCLs)7. AIM2 was expressed constitutively both in primary
macrophages and in B6-MCLs, and was further induced by
poly(dA:dT) or Sendai virus (Supplementary Fig. 8). Three different
shRNAs were tested, of which two (Aim2 shRNA2 and shRNA3)
resulted in a strong reduction of Aim2 expression (Fig. 3b).
Knocking down Aim2, but not an unrelated gene, resulted in a strong
attenuation of both poly(dA:dT)-mediated IL1b release (Fig. 3c) and
caspase-1 cleavage (Fig. 3d). Targeting human AIM2 in THP-1 cells
using short interfering RNA (siRNA) corroborated these findings

(Supplementary Fig. 8d, e). Moreover and consistent with what we
had seen in ASC-deficient macrophages (Supplementary Fig. 1),
knocking down Aim2 resulted in a marked enhancement of
poly(dA:dT)-mediated type I IFN induction (Supplementary Fig.
8b). This effect was specific because the IFNb response to Sendai
virus was unaffected (Supplementary Fig. 8c). Furthermore, in agree-
ment with the results obtained in ASC-deficient macrophages,
macrophages that were targeted with Aim2 shRNAs were resistant
to poly(dA:dT)-triggered cell death (Fig. 3e). We also examined the
role of AIM2 in the recognition of the dsDNA vaccinia virus. Similar
to what we had observed with transfected poly(dA:dT), vaccinia-
virus-induced caspase-1 cleavage occurred in an ASC-dependent
but an NLRP3-independent manner (Fig. 3f). This effect was also
dependent on AIM2, because shRNA-mediated knockdown of Aim2
impaired vaccinia-virus-induced caspase-1 cleavage but not that
induced by anthrax lethal toxin (Fig. 3g). Knockdown of a control
protein did not affect caspase-1 cleavage after vaccinia virus infec-
tion. Vaccinia-virus-triggered cell death was also strongly reduced in
Aim2-shRNA-targeted macrophages, but not in control macro-
phages (Fig. 3h). Altogether, these results indicated that AIM2 con-
trolled inflammasome activation and cell death in response to
dsDNA and the dsDNA vaccinia virus.

To determine whether AIM2 could be involved in the recognition
of dsDNA directly, we generated fluorescein-labelled poly(dA:dT),
(FITC-DNA), and co-transfected FITC-DNA together with CFP-
tagged versions of full-length AIM2, AIM2-HIN, AIM2-PYD or
full-length NLRP3. Whereas cells expressing NLRP3 or AIM2-PYD
showed no co-localization of the respective proteins with FITC-
DNA, full-length AIM2 and AIM2-HIN showed extensive co-local-
ization with FITC-DNA and led to the formation of DNA and protein
aggregates in the cytosol (Fig. 4a). We used single cell flow cytometry
fluorescence resonance energy transfer (FRET) measurements to
quantify these interactions (Fig. 4b)21. A dose-dependent increase
in FRET between full-length AIM2 and FITC-DNA was seen, whereas
AIM2-PYD did not lead to measurable FRET. Other proteins such as
NLRP3 and IFI16 did not show any FRET (data not shown).
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Figure 3 | AIM2 is required for poly(dA:dT)- and
vaccinia-virus-triggered inflammasome
activation. a, 293T cells were transfected as
indicated and the cell lysates were
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Furthermore, binding studies using purified AIM2, AIM2-HIN and
AIM2-PYD with biotinylated poly(dA:dT) (biotin-DNA) showed
that AIM2 directly interacted with poly(dA:dT) with high affinity;
only full-length AIM2 or the AIM2-HIN was able to bind biotin-
DNA (Fig. 4c). Binding of poly(dA:dT) to AIM2 was specific, because
AIM2 did not bind biotin-lipopolysaccharide (LPS), which bound to
soluble CD14 under similar assay conditions (Fig. 4d).

Collectively, these data identify AIM2 as a receptor for cytosolic
dsDNA, which forms a new inflammasome complex with ASC to
activate caspase-1-mediated processing of IL1b. Our data also indi-
cate that the activation of the AIM2 inflammasome is important in
innate immunity to vaccinia virus. Because bacterial pathogens such
as Francisella tularensis22 and aberrant host DNA in pathological
autoimmunity23 also trigger the IL1b pathway, it will be important
to define the role of AIM2 in these responses. Further characteriza-
tion of the AIM2 inflammasome as a sensor of microbial, as well as
host DNA, may therefore enable the rational design of new therapies
and treatments for infectious as well as autoimmune diseases.

METHODS SUMMARY
Reagents and mice. All complementary DNAs were cloned by PCR from cDNA

into pEFBOS-C-term-CFP and subcloned into pEFBOS-C-term-Flag/His.

Biotinylated and FITC-labelled poly(dA:dT) were made by adding biotin-

dUTP or FITC-dUTP (Fermentas) at a molar ratio of 1:8 to dTTP in the enzym-

atic synthesis of poly(dA:dT) as described24. Vaccinia virus (Western Reserve

strain) was from K. Rock. The anti-human AIM2 antibody (3B10) was from R.

Johnstone. Nlrp32/2 and Pycard2/2 mice were as previously described25. Both

strains, as well as NlrP62/2 and Nlrp122/2 mice, were from Millennium

Pharmaceuticals. Caspase-1-deficient mice were from R. Flavell. Il1r12/2 mice

were from Jackson Laboratories.

Bone-marrow-derived macrophages were stimulated as indicated.

Poly(dA:dT) DNA and all other DNAs were transfected using Lipofectamine

2000 at a concentration of 1mg ml21. Cell culture supernatants were assayed for

IL1b using ELISA kits from BD Biosciences. Confocal microscopy was per-

formed on a Leica SP2 AOBS confocal laser scanning microscope. FRET effi-

ciencies were calculated on a cell-by-cell basis21 and histograms were plotted with

GraphPad Prism 5.01 (GraphPad Software). Immunoblot analysis was con-

ducted as previously described7. Quantitative real-time PCR (rtPCR) analysis

was performed as previously described26. Lentiviral shRNAs targeting Aim2 were

obtained from OpenBiosystems and shRNA silencing was carried out as

described (http://www.broad.mit.edu/genome_bio/trc/publicProtocols.html).

The AlphaScreen (amplified luminescent-proximity homogeneous assay) was
set up as an association assay and read with the Envision HT microplate reader

(Perkin Elmer). Reporter assays for NF-kB or IFN luciferase reporters were

carried out as previously described26.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | AIM2 binds dsDNA via its HIN domain. a, 293T cells were
transfected with CFP-tagged AIM2 or NLRP3 (both red) as indicated,
together with FITC-DNA (green), and imaged by confocal microscopy.
Fluorescence intensities of the green (FITC-DNA) and red (CFP-fusion
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METHODS
Plasmid constructs. Full-length human AIM2 (1–356, on the basis of

BC010940.1), AIM2-PYD (1–83), AIM2-HIN (148–356), IFIX (1–461,

NM_198929), IFIX-PYD (1–84), IFI16 (1–729, NM_005531), IFI16-PYD

(1–84), MNDA (1–407), MNDA-PYD (1–84, NM_002432) and NLRP3-PYD

(1–87, NM_004895.3) were cloned by PCR from cDNA into pEFBOS-C-term-

CFP using PCR-generated XhoI and BamHI or BglII restriction sites. AIM2 full-

length, AIM2-PYD and AIM2-HIN were subcloned into pEFBOS-C-term-Flag/

His using XhoI and BamHI. Murine pro-IL1b (1–269) was obtained by PCR

from cDNA and fused into pEFBOS-C-term-GLuc/Flag using XhoI and BglII/

BamHI. Expression plasmids (pCI) encoding human caspase-1 and ASC–HA

were from Millenium Pharmaceuticals.

Reagents. ATP, LPS and poly(dA:dT) were from Sigma-Aldrich. A555-conju-

gated cholera-toxin B was from Molecular Probes, Invitrogen. DRAQ5 was from

Biostatus. Biotinylated and FITC-labelled poly(dA:dT) were made by adding

biotin-dUTP or FITC-dUTP (Fermentas) at a molar ratio of 1:8 to dTTP in

the enzymatic synthesis of poly(dA:dT) as described24. Anthrax lethal toxin

(anthrax protective antigen and lethal factor) was from List Biologicals). The

anti-human-AIM2 antibody (3B10) was from R. Johnstone.

Mice. Nlrp32/2 and Pycard2/2 mice were as previously described25. Both strains,

as well as Nlrp62/2 and Nlrp122/2 mice were from Millennium Pharmaceuticals,

and caspase-1-deficient mice were from R. Flavell. C57BL/6, 129/Sv, C57/

BL6 3 129 F1 and Il1r12/2 mice were from Jackson Laboratories. All mouse

strains were bred and maintained under specific pathogen-free conditions in

the animal facilities at the University of Massachusetts Medical School.

Sequence analysis. Pyrin-domain-containing sequences were retrieved from

UniProt after identifying them in SMART. A multiple-sequence alignment of

selected pyrin domains was generated using MUSCLE27. Secondary structure

elements from the POP1 crystal structure (Protein Data Bank accession

2HM2) were mapped to the multiple-sequence alignment in PFAAT28.

Prediction of nuclear targeting sequences and subcellular localization was done

using PSORTII (http://psort.ims.u-tokyo.ac.jp/).

Cell culture and stimulation. Bone-marrow-derived macrophages were gener-

ated and cultured in DMEM medium as described26. THP-1 cells and macro-

phage cell lines were cultured as previously described7. One day before

stimulation, THP-1 cells were differentiated using 0.5mM PMA7. ATP (5 mM)

was added 1 h before collection of supernatants. Poly(dA:dT) DNA and all other

DNAs were transfected using Lipofectamine 2000 at a concentration of 1mg ml21

according to the manufacturer’s instructions. Expression plasmids were trans-

fected into 293T cells using GeneJuice (Novagen). Vaccinia virus (WR strain)

was used for infection at a MOI of 5 if not indicated otherwise. Anthrax lethal

toxin (protective antigen and lethal factor) were both at 5 mg ml21.

ELISA. Cell culture supernatants were assayed for IL1b by ELISA (BD

Biosciences). To measure intracellular IL1b, cells were washed and subjected

to three freeze-thaw cycles in assay diluent.

Confocal microscopy. Confocal microscopy was performed on a Leica SP2

AOBS confocal laser scanning microscope. Separation of CFP and YFP was

performed using sequential scanning and 405 and 514 nm excitation.

Flow cytometry fluorescence resonance energy transfer. Three fluorescent

intensities were measured: I1, direct excitation and emission of donor; I2, indir-

ect excitation and direct emission of acceptor; and I3, direct excitation and

emission of acceptor. After full correction for spectral bleed-through and cross

excitation, FRET efficiency was calculated on a cell-by-cell basis21 and then FRET

efficiency histograms were plotted with GraphPad Prism 5.01 (GraphPad

Software).

Immunoblot analysis. Immunoblotting was conducted as previously described7

using anti-murine caspase-1 p10 (Santa Cruz Biotechnology), anti-Flag (M2,

Sigma), anti-HA (Roche Applied Science), anti-CFP (Santa Cruz

Biotechnology), anti-ASC (Alexis, AL177), anti-IFI16 (sc-8023, Santa Cruz

Biotechnology) or anti-AIM2 (3B10 mouse IgG129).

Co-immunoprecipitation assays. 293T cells (24 wells) were transfected with

1,550 ng of the PYD–CFP expression plasmids and 50 ng of ASC–HA. Twenty-

four hours later, cell lysates were cleared by centrifugation (20,000g, 30 min) and

subsequently incubated with anti-HA agarose beads for 2 h at 4 uC.

Differentiated THP-1 cells were primed with Sendai virus (300 haemagglutinat-

ing units (HAU) ml21) overnight and subsequently lysed in high salt lysis buffer

(250 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1% CHAPS, protease inhibitor cock-

tail). Lysates were cleared by centrifugation, salt concentration was adjusted to

125 mM NaCl and ASC was immunopreciptated using rabbit polyclonal anti-

ASC antibody. After six washes in both cases beads were boiled with Laemmli

buffer for immunoblot analysis.

Quantitative real-time PCR. Quantitative rtPCR analysis was performed as

described26. Primer sequences for murine Hprt1, Ifnb, Aim2 and Il6 are available

upon request.
shRNA-mediated silencing. The lentiviral shRNA expression plasmids were

from OpenBiosystems. The shRNAs targeting Aim2 are: TRCN0000096104

(shRNA1), TRCN0000096105 (shRNA2) and TRCN0000096106 (shRNA3).

The control shRNA is directed against murine Ifih1 (TRCN0000103648) and

was confirmed not to have any affect on Nlrp3 or Aim2 expression. The produc-

tion of viral particles and transduction of target cells was conducted as described

on http://www.broad.mit.edu/genome_bio/trc/publicProtocols.html.

AlphaScreen assay. The AlphaScreen was set up as an association assay. Proteins

were transiently expressed in 293T cells and purified using Flag beads (Sigma)

binding to the C-terminal Flag/His tag. The protein of interest was incubated at a

concentration of 100 nM with biotinylated ligand at the indicated concentration

in PBS, 0.1% BSA and 0.01% Tween 20 for 60 min. Subsequently, nickel chelate

acceptor beads (binding to the His tag) and streptavidin-coated donor beads

were added. After 30 min incubation at 25 uC in the dark, samples were read in

proxiplates with the Envision HT microplate reader (all Perkin Elmer). Data

were analysed by GraphPad Prism.

Reporter assays. All reporter gene assays were conducted as described26.

siRNA transfection. Differentiated THP-1 cells were plated at 2.5 3 104 cells per
well in 96-well plates and transfected with siRNA targeting human AIM2 (sense

strand: 59-CCCGAAGATCAACACGCTTCA-39), human ASC (sense strand: 59-

CGGGAAGGTCCTGACGGATGA-39) or human TLR8 (59-GGGAGUUA-

CUGCUUGAAG A-39) using 275 ng siRNA and 0.75ml Lipofectamine 2000.

Cells were stimulated as indicated 48 h after transfection.

Cell viability assay. To quantify cell viability, macrophages (1 3 105 cells per

well in 96-well plates) were treated as described. After 24 h, cells were washed

with PBS and incubated in PBS plus 5mM calcein AM (Invitrogen) for 30 min at

37 uC. The number of viable cells was assessed by counting fluorescent cells in

two independent visual fields (320 magnification) using ImageJ or by deter-

mining the overall fluorescence intensity using an Envision HT microplate

reader.

27. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
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