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SUMMARY

Large noncoding RNAs are emerging as an important
component in cellular regulation. Considerable evi-
dence indicates that these transcripts act directly
as functional RNAs rather than through an encoded
protein product. However, a recent study of ribo-
some occupancy reported that many large intergenic
ncRNAs (lincRNAs) are bound by ribosomes, raising
the possibility that they are translated into proteins.
Here, we show that classical noncoding RNAs and
50 UTRs show the same ribosome occupancy as
lincRNAs, demonstrating that ribosome occupancy
alone is not sufficient to classify transcripts as cod-
ing or noncoding. Instead, we define a metric based
on the known property of translation whereby trans-
lating ribosomes are released upon encountering a
bona fide stop codon. We show that this metric
accurately discriminates between protein-coding
transcripts and all classes of known noncoding tran-
scripts, including lincRNAs. Taken together, these
results argue that the large majority of lincRNAs do
not function through encoded proteins.

INTRODUCTION

The mammalian genome encodes many thousands of genes

thought to encode large noncoding RNAs (Birney et al., 2007;

Carninci et al., 2005; Derrien et al., 2012), including �3,500

termed ‘‘large intergenic noncoding RNAs’’ (lincRNAs) (Guttman

et al., 2009, 2010). The lincRNAs have recently been shown to

play key roles in diverse biological processes and are emerging

as an important class of regulatory molecules (Guttman et al.,

2011; Guttman and Rinn, 2012; Ørom et al., 2010; Ulitsky

et al., 2011; Wang and Chang, 2011). The lincRNAs resemble
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messenger RNAs (mRNAs) with respect to transcription, length,

and splicing structure yet differ in that (1) they do not contain

open reading frames (ORFs) that show the cross-species muta-

tional pattern expected of evolutionarily conserved proteins

(Guttman et al., 2009, 2010); (2) they do not contain ORFs that

show the within-species substitution patterns expected of

recently evolved proteins (Figure S1 available online; Experi-

mental Procedures); (3) they tend to be highly enriched in the

nucleus (Derrien et al., 2012); (4) many physically interact with

chromatin regulatory proteins to affect gene expression (Gutt-

man et al., 2011; Guttman and Rinn, 2012; Wang and Chang,

2011); and (5) they rarely produce proteins detectable by mass

spectrometry (Bánfai et al., 2012; Slavoff et al., 2013). Together,

these results suggest that lincRNAs function directly as RNA

molecules rather than through a translated protein product.

Recently, an approach termed ribosome profiling was

described that enables the global analysis of translation in a

wide range of organisms, including yeast and mammals. This

method involves digestion of RNA followed by separation of

80S ribosomes based on their size and density through a

sucrose cushion (Ingolia et al., 2009, 2011). The associated

RNAs are then sequenced to assess the occupancy of ribo-

somes on RNAs. Ribosome profiling can be used to identify

mRNAs associated with 80S ribosomes, distinguish ribosome-

free 30 UTRs on these messages, and assess the quantitative

dynamics of translation within translated regions (Ingolia et al.,

2009, 2011). Global identification of the locations of 80S ribo-

somes can be used to identify previously unknown translation

events. Defining the full set of translation products is important

for identifying regions that encode functional proteins (Stern-

Ginossar et al., 2012). Yet not all translation events lead to stable,

functional polypeptides. Instead, this translation could be impor-

tant for regulation of a downstream ORF (Geballe and Morris,

1994), contribute to the antigenic potential of pathogens (Starck

et al., 2008), regulate mRNA stability by inducing nonsense-

mediated decay (Smith and Steitz, 1998), and may even serve

as a source of proto-proteins enabling the evolution of novel
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proteins (Carvunis et al., 2012). Finally, some eventsmay have no

biological function at all, representing biological noise without

deleterious consequence to the organism. Thus, the detection

of 80S ribosomes on an RNA does not alone provide evidence

that the RNA encodes a functional protein. For example, the

host messages for a number of small nucleolar RNAs (snoRNAs)

are translated, and this is used to induce rapid degradation

through the nonsense-mediated decay pathway, thereby allow-

ing disposal of the mature RNA after the snoRNAs have been ex-

tracted from intronic regions (Smith and Steitz, 1998). Thus, it is

important to develop strategies for using the 80S footprint data

provided by ribosome profiling experiments to distinguish true

messengers that encode functional proteins from those that

are noncoding.

Recently, it was reported that the ribosome occupancy of

most lincRNAs more closely resembles translated regions of

protein-coding genes compared to 30 UTRs, raising the possibil-

ity that lincRNAs are translated into functional proteins (Ingolia

et al., 2011). Given the many lines of evidence that lincRNAs

do not encode functional proteins, we examined the ribosome

profiling data in greater detail. In particular, we considered

whether noncoding RNAs should be expected to resemble 30

UTRs with respect to their ribosome profiles. There is an impor-

tant distinction between these two situations. When a ribosome

engaged in translating an ORF encounters a stop codon, it is

actively disassembled and is recycled (Jackson et al., 2010; Kis-

selev and Buckingham, 2000) (Figure 1A); this creates a sharp

drop in the ribosome occupancy in 30 UTRs relative to the

ORF. In contrast, in transcripts that have not been selected to

produce a distinct protein product, it is possible that the ribo-

some initiates translation at multiple locations and thus may

show significant occupancy across regions within the transcript

or even over the entire transcript. (In theory, ribosomes might

also scan the transcript without engaging in translation; we will

address this possibility elsewhere.) Thus, noncoding transcripts

might show very different ribosome profiles than 30 UTRs.
Here, we study the pattern of ribosome occupancy on tran-

scripts to evaluate whether lincRNAs show evidence of encoding

functional proteins. In particular, we analyze the existing ribo-

some profiling data across other noncoding regions, including

50 UTRs and classical noncoding RNAs (such as small nuclear

and nucleolar RNAs, microRNA precursors, and large ncRNAs

such as telomerase RNA and RNase P), all of which are well

established to be noncoding (Eddy, 2001). We find that known

noncoding controls also show ribosome profiles that differ

from those of the 30 UTRs of protein-coding genes. Moreover,

50 UTRs resemble coding regions of protein-coding genes

more closely than do lincRNAs.

To systematically analyze the pattern of ribosome occupancy

across different classes of RNAs, we developed a metric that we

term the ribosome release score (RRS), which identifies func-

tional protein-coding transcripts with greater sensitivity by

detecting the termination of translation at the end of an ORF

(Jackson et al., 2010; Kisselev and Buckingham, 2000). We

show that the RRS sharply distinguishes between the class of

well-established protein-coding regions and other classes

such as 50 UTRs and classical ncRNAs and that the class of

lincRNAs closely resembles the other noncoding classes with
respect to this metric. Because 50 UTRs and classical ncRNAs

do not encode functional proteins, the similar pattern of ribo-

some occupancy on the lincRNAs indicates that they too are

unlikely, as a class, to produce functional proteins.

RESULTS

We began by defining a variety of control sets whose coding

status is well accepted: (1) the translated regions, 50 UTRs, and
30 UTRs of 10,050 known protein-coding transcripts (‘‘genes

encoding typical-size proteins’’); (2) the translated regions of

639 known protein-coding transcripts encoding a protein with

<100 amino acids (‘‘genes encoding small proteins’’); and (3)

130 well-established noncoding RNAs that are well expressed

in mouse embryonic stem (ES) cells (referred to as ‘‘classical

noncoding RNAs’’), including small nuclear RNAs, small nucle-

olar RNAs, microRNA precursors, and large noncoding RNAs

(ncRNAs) such as telomerase RNA, RNase P, Neat1, and

Neat2/Malat1 (see Experimental Procedures).

Relative to these control sets, we analyzed a set of 167 ex-

pressed lincRNAs whose RNA levels were well represented in

the Ingolia et al. (2011) data set (see Experimental Procedures).

We previously defined these lincRNA transcripts based on a

chromatin signature of active transcription (Guttman et al.,

2009). This lincRNA set excludes a small group of 11 genes that

have short ORFs that show a pattern of evolutionary conservation

characteristic of protein-coding genes (Guttman et al., 2009; Lin

et al., 2011) and thus may encode a small protein; we refer to

this set as the codon substitution frequency (CSF)+ set (see

Experimental Procedures). In addition, this lincRNA set excludes

a small group of seven genes that have nonconserved long ORFs

but have been annotated as putative protein-coding genes based

on homology to other proteins (see Experimental Procedures).

We analyzed the previously published ribosomeprofiling data in

mouse ES cells (Ingolia et al., 2011) for each class of RNAs. We

note that the absolute level of ribosome occupancy (as assayed

by the ribosome profiling method) is not a useful metric because

it is strongly correlated with RNA levels for both coding and non-

coding transcripts (r = 0.89). To overcome this problem, a relative

metricwasproposedcalled the translational efficiency (TE) (Ingolia

et al., 2011). For each gene, this relative metric is defined as the

number of sequencing reads observed among ribosome-associ-

ated RNA divided by the number of reads in total poly-A+ RNA.

The TE score can be computed as either (1) the average value

(TE mean) across an entire feature (transcript or region) or (2) the

maximum value (TE max) in windows of a specified size within a

feature. Ingolia et al. (2011) based their conclusions on the TE-

max metric with a window size of 90 bases in order to account

for potential translation in short coding regionswithin a longer non-

coding transcript. Accordingly, we used the same metric.

We first confirmed the previous observations that (1) coding

regions differ sharply from 30 UTRs (Figures 1B–1D) and (2) the

lincRNAs resemble coding regions more closely than 30 UTRs
(Figures 1C, 1D, and 2A). It was these observations that raised

the possibility that most lincRNAs are translated into proteins.

Interestingly, we found that the same observations applied

to the noncoding controls—that is, the classical noncoding

RNAs and 50 UTRs. As with the lincRNAs, these noncoding
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Figure 1. Properties of the Translational Efficiency Score

(A) An overview of mRNA translation.

(B) Examples of ribosome profiling data over four mRNAs: Stat3, Sox2, Klf4, and Ezh2. The first three rows show, respectively, the sequencing coverage in counts

(y axis) of the ribosome-associated fraction, ribosome-associated fraction after treatment with cycloheximide, and polyA-selected total RNA per nucleotide

(x axis) on the associated transcript. The fourth row shows the CSF score across the mRNA, which indicates the degree to which the sequence shows the

evolutionary conservation pattern expected in protein-coding regions. Black corresponds to conserved coding potential (CSF > 0), and light gray corresponds to

lack of conserved coding potential (CSF < 0). Dashed lines correspond to the boundaries of the coding region of the mRNA, and the location and score of themax

90-mer TE score is shown for the 50 UTR, 30 UTR (thin black boxes), and coding region (thick black boxes).

(C) Cumulative distribution of the average TE score across coding regions (purple line), small coding regions (magenta line), 30 UTRs (gray line), 50 UTRs (blue line),
classical ncRNAs (black line), and lincRNAs (red line). The dashed lines show the median separation relative to 30 UTRs for 50 UTRs (bottom), lincRNAs and

classical ncRNAs (middle line), and coding regions (top line).

(D) Cumulative distribution of the TE computed using the max 90-mer window across the same classes.

See also Figure S1.
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Figure 2. Translational Efficiency of the Maximum 90-Mer Fails to Separate Translated and Nontranslated RNAs

(A) Scatterplot of RNA expression (log scale, x axis) compared to the TE of the maximum 90-mer (log scale, y axis) for coding regions (purple dots), 30 UTRs (gray
dots), 50 UTRs (blue dots), classical ncRNAs (black dots), and lincRNAs (red dots). Horizontal lines correspond to the indicated percentiles of the TE-max score for

protein-coding regions. The overlaid density distributions of the TE-max scores for each feature are shown.

(B) Two examples of classical ncRNAs that have very high translational efficiency scores: RNase P and the telomerase RNA (Terc). The four rows (ribosome,

cycloheximide, mRNA, and CSF) are as described in legend of Figure 1. Beneath is an ideogram of the RNA, the location of a potential ORF (white box), and the

score of the maximum 90-mer (blue box).

(C) Examples of two small coding genes encoding 35 and 38 amino acid peptides.

See also Figure S2.
controls also more closely resemble protein-coding regions than

30 UTRs with respect to either the TE-mean (Figure 1C) or the TE-

max metric (Figures 1D and 2A). Indeed, �48% of these non-
translated controls have translational efficiency scores that

exceed the 95th percentile of the scores for 30 UTRs (Figures

1C and 1D).
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50 UTRs
One possible explanation for the high TE scores for 50 UTRs is

that it results solely from the translation of a small number of up-

stream ORFs (uORFs). To explore this possibility, we first

excluded regions within the 50 UTR that contained ORFs begin-

ning with a canonical start codon (AUG). After removing these

uORFs, we still observed a striking difference between 50 UTRs
and 30 UTRs using both the TE mean and TE max (Figure S1).

We further excluded the regions surrounding all ORFs beginning

with a near-cognate start codon (CUG, GUG, or UUG), which,

together with canonical ORFs, account for roughly 75% of pro-

posed uORFs (Fritsch et al., 2012; Ingolia et al., 2011; Lee

et al., 2012). After removing these near-cognate uORFs, we still

observed a similar difference compared to 30 UTRs (Figure S1).

Although some of the observed ribosome occupancy in 50

UTRs is surely due to uORFs (a topic that we discuss elsewhere),

the results indicate that the observed ribosome occupancy

cannot be explained solely by sharply defined uORFs with

cognate or near-cognate start codons.

Classical ncRNAs
We considered the possibility that the ribosome occupancy

measure may be inflated for the classical ncRNAs because

many lack polyA tails. This is potentially relevant because the

‘‘translational efficiency’’ defined by Ingolia et al. (2011) is based

on normalization to polyA-selected mRNA levels, whereas the

‘‘ribosome-associated fraction’’ involved no polyA selection

(Ingolia et al., 2011). To control for polyA status, we generated

a control RNA sequencing (RNA-seq) expression data set that

was not polyA selected (see Experimental Procedures). Impor-

tantly, when normalizing by the non-polyA-selected RNA levels,

we observe a nearly identical result, with the lincRNAs closely

resembling the classical ncRNAs, and both being well separated

from the 30 UTRs (Figure S2). Although this consideration affects

abundance estimates for certain nonadenylated RNAs, the high

observed ribosome occupancy is not simply due to the lack of

poly-A tails on the classical ncRNAs.

Notably, some of the strongest translational efficiency scores

(>99th percentile of 30 UTRs in both polyA and non-polyA normal-

ized samples) are observed for very well-characterized ncRNAs,

including the telomerase RNA, RNase P, small nuclear RNAs,

small nucleolar RNAs, vault RNA, microRNAs (miRNAs), and

other RNAs that have been clearly demonstrated to function as

RNA molecules (Bartel, 2004; Eddy, 2001; Shippen-Lentz and

Blackburn, 1990; Stark et al., 1978) (Figures 2 and S2). This

observation raised the possibility that some background RNA

fragments, not protected by a translating 80S ribosome,

contribute to the apparent translation of these noncoding

RNAs. Indeed, such background could arise in transcripts that

are highly structured and embedded in ribonucleoprotein com-

plexes. A strategy for identifying true 80S ribosome footprints

will be presented elsewhere.

Yet, even after removing likely non-80S ribosomal background

reads, the translational efficiency score still does not distinguish

between protein-coding genes and the noncoding controls (Fig-

ure S2). Accordingly, the ‘‘translational efficiency’’ score per se

does not reliably indicate whether a class of transcripts—such

as lincRNAs—is translated into functional proteins. The fact
244 Cell 154, 240–251, July 3, 2013 ª2013 Elsevier Inc.
that the TE-max metric is not significantly better at separating

these classes than the TEmean implies that the observed results

are not due to small patches within these regions.

Ribosome Release Separates Classes of Coding and
Noncoding RNAs
Because the translational efficiency score does not distinguish

between the classes of coding and noncoding RNAs, we

explored whether we could develop a metric that does distin-

guish between these classes.

We first attempted to define a metric based on translational

start sites. Specifically, we used ribosome profiling data gener-

ated after treatment with harringtonine, a drug that binds 60S

ribosomes and has been reported to block initiation (Ingolia

et al., 2011). As such data are expected to show enrichment at

sites of translation initiation, we tested whether we could distin-

guish between the annotated start codons in protein-coding

genes and randomly chosen start codons in classical noncoding

RNAs. We observed little difference in enrichment in the former

set relative to the latter set. This was true regardless of whether

we studied the maximum enrichment seen over any start codon

or the enrichment seen at the start codon of the ORF with the

highest ribosome occupancy (see Extended Experimental Pro-

cedures and Figure S2). Because enrichment in the presence of

harringtonine in this data set did not distinguish between known

protein-coding RNAs and classical noncoding RNAs, we could

not use these data to study the translational status of lincRNAs.

We next attempted to define a metric based on translational

stop sites. Because translating ribosomes are known to be

released upon encountering a stop codon (Jackson et al., 2010;

Kisselev and Buckingham, 2000), we reasoned that translation

of a discrete (nonoverlapping) ORF should be associated with a

sharp decrease in ribosome occupancy between a protein-cod-

ing region and the subsequent 30 UTR. Indeed, such a striking

pattern occurs in known protein-coding transcripts (Ingolia

et al., 2011). We thus searched for such a decrease in the other

classes of noncoding transcripts (see Figures 1B and 2C). To do

this, we defined putative coding regions within a transcript as all

regions contained within an ORF—that is, a region in any reading

frame that begins with a start codon and ends with the next in-

frame stop codon. We defined the corresponding putative 30

UTRs as a region beginning immediately downstream of the

ORFand ending at the first subsequent start codon (in any reading

frame); we truncated the putative 30 UTR at the first subsequent

start codon to allow for the possibility of polycistronic transcripts.

We defined the RRS to be the ratio between the total number of

reads that are containedwithin the putative coding region and the

total number of reads contained within the putative 30 UTR,

normalized by the respective lengths of these regions. We then

normalized by the ratio of reads in the mRNA coverage between

the two regions, which has the effect of correcting for any erro-

neous annotations of the 30 UTRs (see Experimental Procedures).

We found that the RRS does an excellent job of distinguishing

between the class of known protein-coding genes and the class

of noncoding control transcripts (Figure 3A). Themedian RRS for

the protein-coding genes is�112, meaning that ribosome occu-

pancy is �112-fold higher in the coding region preceding the

stop codon compared to the region immediately after the stop
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Figure 3. Ribosome Release Score Separates Translated and Nontranslated RNAs

(A) Scatterplot of the TE-mean score for each ORF (log scale, x axis) compared to its ribosome release score (log scale, y axis) for coding genes (purple), 50 UTRs
(blue), 30 UTRs (gray), classical ncRNAs (black), and lincRNAs (red). For known coding regions, we show the annotated ORF, and for all other features, we

computed all possible ORFs (see Experimental Procedures). The TE-mean score reflects themean over each ORF. The dashed lines represent the 95th percentile

of 30 UTR values. Along each axis, all points are summarized using an overlaid density plot.

(B) Cumulative density distribution of the RRS for the putative ORF with the highest ribosome occupancy (see Experimental Procedures) for protein-coding

regions (purple), 30 UTRs (gray), 50 UTRs (blue), classical ncRNAs (black), and lincRNAs (red). The dashed line indicates the fold difference between the median

score for lincRNAs and protein-coding regions.

(C) A cumulative density distribution of the maximum RRS over any ORF within a transcript (see Experimental Procedures).

See also Figure S3.
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codon (Figure 3A). By contrast, the RRS across all ORFs within

the classical ncRNAs, 50 UTRs, and 30 UTRs has a median of

0.81, reflecting roughly equal coverage before and after the

stop codon (Figure 3A).

We then examined the RRS for lincRNAs. Importantly, the

median RRS for lincRNAORFs is�1, which is similar to the other

noncoding regions and very different than for protein-coding re-

gions (Figures 3A and 4A–4E).

To account for the possibility that there may be a single ORF

buried within a long noncoding transcript, we repeated the

analysis by analyzing only the ORF with the highest ribosome

occupancy (as defined by the TE score). We still observed a

striking difference (�51-fold) between the class of protein-

coding regions (median RRS �112) and both the classical

ncRNAs and lincRNAs sets (median RRS 2.24 and 2.09, respec-

tively) (Figure 3B).

In addition, even when looking only at the ORFwith the highest

RRS (RRS max), we still observe a dramatic separation between

protein-coding RNAs and the noncoding RNAs, with an�36-fold

separation between themedians of coding regions and lincRNAs

(Figure 3C). Notably, this separation is larger than the 24-fold

separation observed between the medians of coding regions

and 30 UTRs using the TE-max metric (see Figure 1D).

Importantly, we note that the ability of the RRSmetric to sepa-

rate the classes of protein-coding regions and noncoding RNAs

is robust to the precise implementation of the metric. For

example, the RRS described above counts all reads overlapping

the putative coding region. This provides a robust estimate of the

ribosome occupancy and allows for the detection of tiny coding

regions, including those that are smaller than the fragments

(�30 nt) generated in the ribosome profiling assay. Indeed, the

only limitation for detection using this approach is the size of

the 30 UTR, which would have to be larger than the fragment

length generated in the ribosome profiling assay. Amore conser-

vative approachwould include only reads that are fully contained

within the putative coding region, which increases confidence in

the assignment of the ribosome reads but would prevent detec-

tion of tiny coding regions. Using this alternative implementation,

we obtain similar separations between the classes of known

protein-coding regions and all noncoding RNAs (Figure S3).

Similarly, the RRS described above used a trimmed 30 UTR to

account for possible polycistronic transcripts. If we alternatively

define the putative 30 UTR as the entire region following a stop

codon, we observe similar separations (Figure S4).

Although the RRS metric does an excellent job of distinguish-

ing between the class of protein-coding genes and the class of

noncoding RNAs, it does not provide a perfect classifier for indi-

vidual transcripts within these sets because there is overlap

between the distributions for coding and classical noncoding

transcripts (Figure 3A). The known protein-coding transcripts

with low RRS are primarily for transcripts with short 30 UTRs
(less than the fragment length), where estimation of the 30 UTR
counts are less reliable. Other cases occur when the 30 UTRs
have higher read coverage possibly due to ribosome read-

through, overlapping translation of antisense transcription, or

nonribosomal contamination. As such, conclusions about

coding potential of any individual transcript based on the RRS

alone should be taken with care.
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Importantly, the RRS is intended as a relative metric to

compare different classes of transcripts. As such, the absolute

level of the RRS may not be informative because it will be

impacted by various features of a particular data set. Similarly,

the RRS is not intended to measure the relative proportion of

heterogeneous translation states, where some proportion of a

given transcript may be translated and the remainder nontrans-

lated; rather, it is meant to provide predominant translational

features of a class of transcripts (e.g., mRNAs are predominately

protein coding, and lincRNAs are predominantly noncoding).

Furthermore, the RRS is not designed to identify specific trans-

lated regions within a transcript containing multiple overlapping

or nearby translated regions. (We note that overlapping transla-

tion can act as a regulatory mechanism [Lu et al., 2004] or even

produce alternative functional proteins [e.g., Ink/ARF (Sharpless

and DePinho, 1999)].)

Taken together, the RRS shows strikingly different properties

than the TE score. The TE score distinguishes the class of 30

UTRs from all other RNA classes, whereas the RRS score

distinguishes protein-coding regions from all other RNA classes.

The TE score indicates that lincRNAs are bound by ribosomes

to the same extent as 50 UTRs or classical ncRNAs, whereas

the RRS indicates that lincRNAs, like 30 UTRs, 50 UTRs. and
classical ncRNAs, rarely show the known signatures of trans-

lational termination that are characteristic of protein-coding

regions.

Examination of Specific Cases
To further study the utility of the RRS, we revisited the previously

published lincRNA collections (Guttman et al., 2010, 2011). In

seven cases, transcripts that contain long ORFs (>100 amino

acids) but lacked any conservation of their ORFs had been sub-

sequently reannotated as putative protein-coding genes based

on their homology to other proteins (Pruitt et al., 2012). (These

include four RNAs associated with pluripotency [Guttman

et al., 2011].) Because these transcripts had been removed

from our lincRNA collections, they provided useful test cases

for the RRS method. Although the translational efficiency scores

for these seven transcripts resemble those for lincRNAs and

coding regions, the RRS scores clearly distinguish the seven

transcripts from lincRNAs and match those for coding regions;

this provides independent evidence that these seven transcripts

are likely to be translated. (We note that our lincRNA catalog con-

tains a handful of additional transcripts that contain long ORFs,

such as the Xist ncRNA, but show no evidence of coding poten-

tial based on evolutionary conservation or homology to known

proteins; these cases have low RRS.)

In addition to these 7 transcripts, 12 additional lincRNAs

showed high RRS but low CSF. These 12 transcripts also fail

to show other detectable signatures of translation such as

protein homology; they may also represent noise within the

RRS distribution, as a comparable proportion of the classical

ncRNA transcripts would be similarly mischaracterized

based on the RRS at this threshold (Figure 3A). This is con-

sistent with the observation above that RRS is not a perfect

classifier for individual transcripts. In contrast, methods such

as CSF demonstrate sharper discriminative power between

coding and noncoding transcripts (Guttman et al., 2009,
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Figure 4. Ribosome Release Separates

lincRNAs from Small Coding Genes

(A) A scatterplot of the RRS (log scale, x axis)

versus the CSF (y axis) is plotted for each ORF of

the lincRNAs (red points) and known small pep-

tides (purple points). The dashed line corresponds

to a CSF score of 50, the cutoff used to define a

CSF+ set (CSF R 50) and CSF� set (CSF < 50)

(see Experimental Procedures).

(B) An example of a representative CSF+ transcript

encoding a likely 58 amino acid protein with an

RRS of 14. The four rows (ribosome, cyclohexi-

mide, mRNA, and CSF) are as described in the

legend of Figure 1. The RRS score is noted in blue

beneath the ideogram.

(C) Another representative CSF+ transcript encod-

ing a likely 44 amino acid protein with an RRS of 17.

(D) A representative CSF� transcript, linc1451.

The putative ORF (white) is defined as the ORF

with the highest ribosome occupancy and has an

RRS of 1.34.

(E) Another representative CSF� transcript,

linc1281. The putative ORF (white) has an RRS

of 1.22.

See also Figure S4.
2010) and are therefore more reliable on a per-transcript

basis, but they fail to detect proteins that are not conserved

(Lin et al., 2011).
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In addition to a general analysis, earlier

work noted two specific lincRNAs whose

ribosomal profiles suggest the presence

of a discrete translated region over an

ORF (see Figures 5B and 5D in Ingolia

et al., 2011). These two examples show

TE scores similar to other lincRNAs but

have very high RRS, which is consistent

with those observed for other small cod-

ing regions. Notably, both of these exam-

ples belong to the CSF+ set noted

above—that is, the small set of 11 chro-

matin-defined genes that show the

pattern of evolutionary conservation char-

acteristic of protein-coding genes and

thus may be translated (Figures 4A–4C).

These two examples are thus among a

handful of cases previously noted as likely

to encode proteins (Guttman et al., 2009,

2010). Notably, the genes in the CSF+

set have higher RRS scores (comparable

to that seen for genes known to encode

small proteins), supporting the notion

that many indeed are translated into func-

tional proteins (Figure 4A). Importantly,we

note that demonstrating that these or

other transcripts encode novel proteins

will require more direct experiments,

including identification of the encoded

protein product in vivo.

These results support the notion that detailed analysis

of ribosome release can aid in identifying transcripts that

are translated into functional proteins and separating them
–251, July 3, 2013 ª2013 Elsevier Inc. 247



from the numerous transcripts likely to function directly as

RNAs.

DISCUSSION

The observation that lincRNAs have higher ribosome occupancy

than 30 UTRs raised questions about the biological function of

lincRNAs. Here, we show that a more complete analysis of the

ribosome profiling data argues that most do not function by

encoding small proteins. First, the ribosome occupancy

observed on lincRNAs is comparable to that seen on other

known noncoding RNAs; this implies that ribosome occupancy

per se is not a reliable indicator of whether a transcript functions

by encoding a protein. Second, the ribosomal profiling data

indicate that most lincRNAs, like other well-known noncoding

RNAs, do not show the sharp decrease in ribosome occupancy

following a stop codon that is consistently seen for known

protein-coding genes (including those encoding small proteins).

Taken together, these findings clearly demonstrate that

lincRNAs are likely to function directly as RNA molecules rather

than through encoded protein products.

If 50 UTRs, lincRNAs, and other known noncoding RNAs do not

act through encoded proteins, why do they exhibit any ribosome

occupancy at all? There are several possible explanations.

One possibility is that the fragments obtained in the ribosome

profiling experiments result from protection of RNA by nonribo-

somal RNA-protein complexes or other sources of nonribosomal

contamination. Indeed, some of the observed RNA fragments

likely do not represent true 80S ribosomal footprints in that there

are many fragments observed from classical noncoding RNAs

that are predominantly localized in the nucleus (such as telome-

rase RNA, RNase P, snRNAs, and others). Consistent with this

notion, the fragments derived fromboth cytoplasmic and nuclear

classical noncoding RNAs show a different size distribution than

that observed for protein-coding genes. In contrast, the distribu-

tions for 50 UTRs and lincRNAs resemble the distributions

observed for protein-coding genes. However, it is not possible

to determine whether individual fragments arise from the ribo-

some based solely on size, and at least some of the reads on

lincRNAs may also be nonribosomal contamination. Future

work, including the affinity purification of 80S ribosomes and

mass spectrometry of small peptides, will help address this topic

as well as provide more accurate determination of the transla-

tional status of individual transcripts.

The RRS metric is well suited to distinguish real translation

from nonribosomal contamination because it is robust to poten-

tial protection by nonribosomal proteins, as such protection

should show no bias for the presence of a stop codon. Further-

more, as the RRS involves comparing putative translated regions

within a transcript, it is robust to other potential sources of bias

that lead to higher levels of contaminating nonribosomal reads

on specific classes of RNA, such as that observed on the

classical ncRNAs.

An attractive possibility is that the presence of ribosomes on

some ncRNAs may reflect the default engagement of the trans-

lation machinery with any capped transcripts present in the

cytosol. In the absence of selective pressure for the use of a

specific start codon, ribosomes may initiate translation at
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heterogeneous sites with a bias toward the beginning of the tran-

script. Additionally, ribosomes that encounter short ORFs may

be capable of reinitiating translation after encountering stop

codons. This may lead to the translation of multiple, overlapping

reading frames, biased toward the 50 end of the transcript.

Such engagement may produce 80S footprints but without the

translation of a predominant functional reading frame and

the sharp decrease in ribosome occupancy at its stop codon.

The RRS metric is well suited to distinguish this behavior

and thus provides a valuable metric to prioritize candidates

for more in-depth characterization using labor-intensive ap-

proaches such as mass spectrometry and or epitope tagging

that have been used to evaluate whether translation events

observed in ribosome profiling experiments contribute to a cell’s

proteome (Bánfai et al., 2012; Slavoff et al., 2013; Stern-Ginossar

et al., 2012).

If classical ncRNAs and lincRNAs are bound by ribosomes,

even though they lack canonical features of translation, this

raises fascinating questions similar to those raised by pervasive

transcription, which occurs even in regions of the genome that

do not produce stable RNA products (Birney et al., 2007; Car-

ninci et al., 2005; Kapranov et al., 2007). Translation can have

functional implications beyond the production of a protein prod-

uct by affecting the stability, structure, and localization of an

RNA. It can also reflect noise with no direct functional role that

can be co-opted over the course of evolution in order to create

a new coding sequence. More work will be needed to determine

the biological implications of these diverse effects and their

impact on the biogenesis and functions of noncoding RNAs.

EXPERIMENTAL PROCEDURES

Filtering and Alignment of Sequencing Reads

We downloaded the data from the Gene Expression Omnibus (GEO) using

accession number GSE30839 (Ingolia et al., 2011). Fastq files were split into

two sets based on whether the libraries were generated by polyA tailing or

linker ligation. Samples generated by polyA tailing were directly aligned. For

the remaining samples, the fastq files were filtered by first clipping all reads

for the adaptor sequences using the FASTX-Toolkit version 0.013. We then

aligned all reads to the genome by using Tophat version 1.4.1, including a tran-

scriptome reference defined using our ab initio transcriptome reconstruction

of mouse ES cells (Guttman et al., 2010), along with all RefSeq- and UCSC-

defined transcripts.

We note that all analyses presented of translational efficiency and ribosome

release use the noncycloheximide-treated ribosome profiling data for consis-

tencywith the previous analysis (Ingolia et al., 2011). However, we note that the

results are comparable even when using cycloheximide-treated ribosome

profiling data.

Defining a Set of Classical Noncoding RNAs

We defined a set of classical noncoding RNAs. We first manually curated all

noncoding RNAs included in the RefSeq catalog. Specifically, we retained

ncRNAs that have been well characterized as noncoding, including snRNAs,

snoRNAs, miRNA precursors, snoRNA host genes, and large ncRNAs with

publications demonstrating a role as an RNA (such as Neat1, Neat2/Malat1,

and Gas5). We then added all small nuclear RNAs and miRNA precursors

downloaded from the functional RNA database (Kin et al., 2007). Finally, we

added a more extensive collection of literature-curated large ncRNAs, taken

from the functional RNA database (Kin et al., 2007). We mapped all RNAs to

the genome and filtered those that overlapped a known protein-coding

gene. We excluded all tiny RNAs < 50 nt because their short size (less than

the length of a sequencing read) made it difficult to estimate coverage. We



merged these different sets and collapsed all overlapping transcripts into a

single merged transcript. We excluded all translation-associated RNAs,

including tRNAs and ribosomal RNAs.

Defining a Set of lincRNAs

We started with all chromatin-defined lincRNAs with transcripts that had been

reconstructed from RNA-seq data (lincRNA V3). The lincRNA set was filtered

for all transcripts that contained a high CSF score or overlapped a known pro-

tein-coding transcript in the latest version of RefSeq (Pruitt et al., 2012), as pre-

viously described (Guttman et al., 2009, 2010). As the data set of Ingolia et al.

(2011) contains significantly lower coverage (by�5-fold) than the data used to

reconstruct the lincRNA transcripts, we sought to analyze only transcripts with

adequate coverage. Accordingly, we calculated the expression levels of each

lincRNA from the data set of Ingolia et al. (2011) and only those lincRNAs with

significant expression relative to the randomized genomic average (p < 0.01).

This yielded a set of 167 lincRNAs.

Defining ORFs

Using the orientation of each transcript, we defined all three possible frames

and identified all possible start codons. For each start codon, we then

searched for an in-frame stop codon. All regions defined by a start and stop

codon pair were defined as a putative ORF.

Excluding Upstream ORFs

To exclude the possibility that the high ribosome occupancy observed in 50

UTRs was due to the presence of upstream ORFs, we defined all ORFs based

on the presence of an AUG followed by an in-frame stop codon within the 50

UTR regions. We then created a modified transcript that contained all regions

except the putative ORFs and calculated the translational efficiency for the re-

maining regions. To exclude all possible near-cognate ORFs, we definedORFs

based on the presence of an AUG, CUG, GUG, or UUG start codon followed by

an in-frame stop codon.We then computed translational efficiency over the re-

maining regions.

Defining a CSF+ Set of Transcripts

Using the 167 lincRNA genes, we computed all possible ORFs and calculated

the CSF score for each ORF using the PhyloCSF package (Lin et al., 2011). We

utilized a PhyloCSF cutoff of 50 to generate a CSF� set (CSF < 50) and a CSF+

set (CSF > 50). We have previously shown that a CSF cutoff of 50 accurately

separates known protein-coding genes from known noncoding sequences

(Guttman et al., 2010). Using this cutoff, we identified 11 chromatin-defined

genes that exceed this cutoff (CSF+); based on their evolutionary conservation

pattern, these genes are likely to encode proteins.

Computing Translational Efficiency Score

We computed the TE score by counting the number of reads overlapping a

feature in the ribosome fraction and dividing by the number of reads in the total

RNA sample. For each feature, we counted only reads that were fully contained

within the feature (thus avoiding counting reads that overlap multiple features).

As the TE score is not a reliable estimator at low expression levels, we

computed a TE score only for those features that had significant mRNA

expression above a randomized genomic background (p < 0.01). We placed

no restrictions on the significance level for the ribosome coverage.

Defining the Maximum TE Score

We scanned a window of 90 nt across each transcript, with windows starting

and ending fully within the transcript or feature. We then calculated the TE

score, excluding windows with insufficient mRNA expression. We counted

only reads that were fully contained in each window. To account for the

difference in coverage level between ribosome and mRNA experiments, we

normalized the score by dividing by the median TE max of coding genes.

For consistency with the methods utilized previously by Ingolia et al. (2011),

we also computed the TE max by identifying the 90-mer window with the

largest number of positions covered by a ribosome read. In this case, ribo-

some reads were assigned to a nucleotide position as previously described

(Ingolia et al., 2011). Briefly, we assigned reads to positions from the 50 end
of the fragment based on the following rules. For reads between (1) 29 and
30 nucleotides in length, we assigned the 15th position, (2) for reads 31–33

nucleotides in length, we assigned the 16th position, and (3) for reads between

34 and 35 nucleotides, we assigned the 17th position. We excluded all reads

with a size < 29 nucleotides and > 35 nucleotides from all calculations because

these are thought to represent nonribosomal contamination. If multiple

windows contained the same number of covered positions, we chose the

50-most window from the transcript start site as the maximum window as pre-

viously described. We then computed the TE score for this defined window

across all features. We identified comparable separations across classes

using both of these measures (Figure S2).

Computing ORFs with the Highest Ribosome Occupancy

We defined putative ORFs to be any region starting with an AUG start codon

and ending with an in-frame stop codon. We computed the TE score for

each ORF in the feature and retained the ORF with the highest TE score as

the ORF containing the highest ribosome occupancy. We similarly defined

all non-ORFs as regions that occurred between a stop codon and the next start

codon (in any frame). To score the TE max and TEmean for ORF and non-ORF

regions, we defined all ORF and non-ORFs within a transcript. We then

computed the TE max or TE mean using only the regions contained within

any of the ORF or non-ORF regions, respectively.

Generating a Non-PolyA-Selected RNA-Seq Data Set

To generate a control mRNA data set that was not limited to transcripts that

were polyadenylated, we generated a non-polyA-selected RNA-seq data set

using ribosomal depletion. We isolated RNA from wild-type mouse ES cells.

RNA was fragmented using 13 fragmentation buffer (Ambion AM8740) by

heating at 70�C for 15 min. RNA was then dephosphorylated using alkaline

phosphatase (Thermo EF0651). RNA was ligated using the partial Illumina

adaptor sequence with a 50-phosphate and 30-dideoxyC (AGATCGGAA

GAGCGTCGTGTA) using T4 RNA ligase 1 (NEB M0204). Ribosomal RNA

was depleted using 120-mer biotinylated probes complementary to the 28S,

18S, and 5.8S ribosomal RNA sequences. The hybrids were captured with

streptavidin magnetic beads (Invitrogen 650-01) and removed. The remaining

RNA was reverse transcribed using a primer complimentary to the linker

(TACACGACGCTCTTCCGAT) using AffinityScript RT (Agilent 200436) at

55�C for 45 min. The complementary DNA (cDNA) was ligated with a second

partial Illumina adaptor sequence with a 50-phosphate and 30-dideoxyC
(AGATCGGAAGAGCACACGTCT) using T4 RNA ligase 1. A library was then

generated using PCR-containing primers with the entire Illumina adaptor

sequences using Phusion polymerase (NEB M0531) for 14 cycles. Libraries

were sequenced on the Illumina HiSeq using 44 base single-end reads.

Scoring Putative Start Codons Using Harringtonine Data

The four harringtonine data sets representing varying treatment times

(90 s, 120 s, 150 s, and 180 s) were analyzed separately. We defined the

enrichment over a start codon as follows. First, we defined a start codon

using the site of the AUG start codon. We then took all reads overlapping

the start codon and defined a ‘‘peak’’ as the total genomic span covered

by reads overlapping the start codon. We then counted all reads within

the peak and divided by the length of the peak. This score was then divided

by the total number of reads over the transcript divided by the length of

the transcript. This score was taken as the enrichment of harringtonine

values over a start codon compared to the rest of the transcript. For each

known coding region, we used the annotated start codon to compute the

enrichment of harringtonine overlapping the start codon. For noncoding

transcripts, we defined putative ORFs and used the AUG site of each

putative ORF as the putative start codon for analysis. We calculated the

harringtonine enrichment for noncoding transcript either by using the putative

ORF with the highest TE score or the ORF with the highest harringtonine

enrichment.

Defining the Ribosome Release Score

For each ORF, we computed the number of ribosome reads fully contained in

theORF divided by the number of ribosome reads fully contained in the 30 UTR,
normalizing each count by the length of the respective region to define a pre-

liminary estimate of ribosome release strength. To account for drops in
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ribosome coverage due to misannotated features or alternative termination

rather than a true stop codon, we also compute the same ratio on RNA reads.

The RNA ratio would be expected to show a similar drop in coverage under

these circumstances, but not for real stop codons. The RRS is defined as

the ratio of the two normalized ratios (ultimately eliminating the need to

normalize by region length):

RRS=

�
CountCDS
Count30UTR

�
Ribosome�

CountCDS
Count30UTR

�
mRNA

As this score is normalized within a transcript, it accounts for differences in

expression levels of the transcript itself.

For known protein-coding genes, we used the annotated coding regions

and 30 UTRs to calculate the RRS. For noncoding transcripts, we computed

the RRS by first defining all possible ORFs. For each putative ORF, we defined

the 30 UTR as the region between the stop codon and the next possible start

codon (in any frame). The RRS score was defined only for ORFs with a signif-

icant expression level above randomized genomic background (p < 0.01). The

RRS was not defined for an ORF if there were no fully contained reads in the

ribosome fractions overlapping both the ORF and its 30 UTR. Because of

this, we also excluded all ORFs and 30 UTRs whose length was less than the

size of the sequencing read length. Finally, the RRS was not defined for non-

coding transcripts (such as telomerase RNA) that contain no ORFs. This led

to 89 lincRNAs and 79 classical ncRNAs for which the RRS was defined.

Although the RRS described above increases confidence that the ribosome

reads originate from the coding region, it prevents detection of tiny coding re-

gions, which are smaller than the read length used in the ribosome profiling

assay. Although, in theory, this is more conservative because it will miss tiny

ORFs, it is possible that these ORFs are the actual translated coding regions,

and therefore the RRS is quite low. Because of these limitations, we also

implemented an alternative version that did not require that the ribosome reads

be fully containedwithin theORF. In this case, we reasoned that any read over-

lapping the coding region would arise from a ribosome overlapping the coding

region, and we counted these as ribosome reads in the coding region. We

similarly computed the 30 UTR scores as any read overlapping the 30 UTR
(excluding reads that also overlap the coding region that will artificially inflate

its estimate). Using this RRS measure, we observed comparable separations

between coding and all noncoding RNAs (Figures 3 and S3).

Importantly, we note that, even when including the entire 30 UTR rather than

truncating it by the presence of the next ORF, we obtain a comparable sepa-

ration to that observed using the truncated 30 UTRs. This demonstrates that

the RRS is a robust metric for determining translational status.
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