
Turning germ cells into stem cells
Peter J Donovan� and Maria P de Miguel

Primordial germ cells (PGCs), the embryonic precursors of the

gametes of the adult animal, can give rise to two types of

pluripotent stem cells. In vivo, PGCs can give rise to embryonal

carcinoma cells, the pluripotent stem cells of testicular tumors.

Cultured PGCs exposed to a specific cocktail of growth factors

give rise to embryonic germ cells, pluripotent stem cells that

can contribute to all the lineages of chimeric embryos including

the germline. The conversion of PGCs into pluripotent stem cells

is a remarkably similar process to nuclear reprogramming in

which a somatic nucleus is reprogrammed in the egg cytoplasm.

Understanding the genetics of embryonal carcinoma cell

formation and the growth factor signaling pathways controlling

embryonic germ cell derivation could tell us much about the

molecular controls on developmental potency in mammals.
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Abbreviations
ALV avian leukosis virus
bFGF basic fibroblast growth factor

CDK cyclin-dependent kinase

EC embryonal carcinoma

EG embryonic germ

ES embryonic stem

FGFRs FGF RTKs

ICM inner cell mass

JAKs Janus kinases

KL Kit ligand

LIF leukemia inhibitory factor

PGC primordial germ cell

PI3K phosphatidylinositol 3-kinase

RTK receptor tyrosine kinase

STAT signal transducers and activation of transcription

TNAP tissue non-specific alkaline phosphatase

Introduction
Pluripotent stem cells have two remarkable qualities:

first, they can be grown indefinitely in laboratories as

stem cells and maintain a normal karyotype making them

an infinitely renewable resource; second, they can be

induced to differentiate into every cell type in the body.

These two properties make them an incredible reagent

for the treatment of human disease, for studying devel-

opment and for toxicological and teratological risk

assessment. In mammals, three types of pluripotent stem

cell types have been isolated into culture. Embryonic

stem (ES) cells are derived by culturing the inner cell

mass (ICM) of the pre-implantation blastocyst. Embryo-

nic germ (EG) cells are derived from cultured primordial

germ cells (PGCs), the embryonic precursors of the

gametes of the adult animal. Embryonal carcinoma

(EC) cells are derived by culturing testicular tumors

(teratomas and teratocarcinomas) and represent the stem

cells of those tumors and are also derived from PGCs (see

[1] for review). The pluripotency of EC and EG cells has

been demonstrated in widely-used assays and demon-

strate that they share many properties with pluripotent

ES cells. Curiously, when the PGCs from which EC and

EG cells are derived are themselves tested in assays of

developmental potency they cannot give rise to any

other cell types and are described as ‘nullipotent’.

Therefore, unlike ES cells — which are derived from

the pluripotent ICM — EC and EG cells are derived

from a nullipotent PGC.

The conversion of PGCs into either EC or EG cells is a

similar process to nuclear reprogramming [2], in which a

somatic cell nucleus is reprogrammed in egg cytoplasm,

converting the nucleus from a nullipotent to a totipotent

state capable of recapitulating embryonic development

[2,3]. The cytoplasmic factors present in the egg cyto-

plasm that allow reprogramming are not completely

understood. The conversion of a PGC into a pluripotent

stem cell provides a unique window into such reprogram-

ming events. Here, we focus on two aspects of pluripotent

stem cell formation from PGCs. First, we discuss the

genetics of EC cell formation, which gives important

clues as to genes regulating developmental potency.

Second, we discuss growth factors required for EG cell

formation, which provide an entrée into signaling path-

ways required for pluripotent stem cell formation.

Germ cells: taking the road less traveled
During development, PGCs are found in the epiblast

adjacent to the extra-embryonic ectoderm [4,5]. They

express tissue non-specific alkaline phosphatase (TNAP)

and the POU domain transcription factor Oct4, both of

which are also expressed by pluripotent cells of the ICM

and ES cells [6]. PGCs also begin to express genes, such

as Stella and Fragilis, that distinguish them from other

epiblast cells and which may regulate germline develop-

ment [7��,8��]. Once determined, PGCs migrate to the

embryonic gonad [9] and proliferate to establish the
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population of cells that will form the gametes. PGC

growth during this period is controlled by multiple factors

including the c-Kit receptor tyrosine kinase (RTK) and its

ligand, Kit ligand (KL) [10]. PGCs also begin to express

other markers that distinguish them from the ICM and ES

cells such as the murine homolog of the Drosophila vasa
gene, mVasa, an RNA helicase [11]. PGCs that have

entered the gonad will then stop proliferating and begin

differentiation. Male PGCs enter mitotic arrest whereas

female PGCs enter directly into meiosis in the embryo

and then arrest at meiotic prophase [9]. Some of these

events can be recapitulated in culture because PGCs

proliferate in vitro for about as long as they do in vivo
and they can enter meiosis [12–14]. Precise control over

PGC proliferation and differentiation in vivo ensures that

appropriate numbers of cells are present in the gonad to

form gametes in the adult. If the numbers of PGCs in the

embryonic gonad are too small, animals can be infertile.

Similarly, if PGC proliferation goes unchecked, especially

in males, tumors can result.

Embryonal carcinoma cells: the ‘first’
pluripotent stem cells
Testicular teratomas are highly unusual benign tumors

containing derivatives of the three primary germ layers

[15]. Roy Stevens was the first to note that in strains of

mice that develop testicular teratomas there are small

nests of proliferating cells in the developing gonad at E15

(reviewed in [15,16]). Eventually these cells, which he

called EC cells, rupture the seminiferous tubules and

enter the interstitial spaces. Here they differentiate into

vesicle-like structures that resemble normal embryonic

ectoderm, mesoderm and endoderm. After birth, these

structures become disorganized and the embryonic-like

cells differentiate into a wide variety of cell types and

tissues [16]. Assays of developmental potency show that

isolated EC cells are pluripotent stem cells but when they

lose the ability to differentiate they form malignant

teratocarcinomas. A beautiful study [17] showed that

EC cells are themselves derived from PGCs (Figure 1).

The key issue is how PGCs give rise to EC cells. Inter-

estingly, although testicular cancer is the most common

type of cancer in young men, the disease is rare in mice.

The strain developed by Stevens, 129/Sv, has an increased

incidence (1–2%) of testicular teratoma [18]. However,

when embryonic testes of 129/Sv mice are grafted to

ectopic sites in adult hosts, �66% of those grafts develop

into tumors (see [15,16] for review), suggesting that

environmental factors, together with genetic conditions,

influence PGC growth and teratocarcinogenesis.

Susceptibility loci and the hunt for genes
Testicular teratoma and teratocarcinoma development in

mice is amenable to genetic analysis and modifier loci

controlling testicular cancer incidence have been identi-

fied [19��]. Mutations at the Steel locus on mouse chromo-

some 10 (encoding KL), the Teratoma locus on mouse

Figure 1
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Pluripotent cells of the ICM give rise to all the cells of the embryo including the somatic cell lineages (soma) and the germline (PGC). Cultured cells

of the ICM can give rise to ES cells in vitro through the action of the indicated genetic pathways. PGCs give rise to EC cells in vivo through the

activation or mutation of the indicated genes, or to EG cells in vitro by exposure to the indicated cocktail of growth factors. Both EC and EG cells are

pluripotent stem cells that can give rise to cells of the three germ layers.
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chromosome 18 and the Trp53 gene all increase the

testicular tumor incidence [18,19��,20]. Curiously, both

the steel and teratoma mutations actually impair PGC

development but act to increase the incidence of terato-

carcinogenesis [18]. The simplest explanation for this

phenomenon is that conditions favoring PGC death effec-

tively drive selection of cells that can survive, forcing the

conversion of PGCs into EC cells. Indeed, recent studies

(e.g. [21]) demonstrate that somatic cells derived from the

gonads of 129/SvTeratoma mice induce programmed cell

death in PGCs perhaps because they lack a key PGC

survival factor. Recent studies (e.g. [20]) have also iden-

tified a primordial germ cell tumor susceptibility locus

(pgct1) on mouse chromosome 13. Interestingly, that

region of mouse chromosome 13 is syntenic with a human

chromosome 5q region implicated in human testicular

tumor susceptibility. The ability of genetic approaches to

identify tumor susceptibility loci has recently been

improved and several germ cell tumor susceptibility loci

on mouse chromosome 19 have been identified [19��,22].

Importantly, completion of the mouse and human ge-

nome sequences now allows candidate modifier genes to

be quickly identified and tested.

In humans, testicular cancer seems to correlate with con-

ditions that result in lower germ cell numbers [23], includ-

ing cryptorchidism [24], androgen insensitivity syndrome

[25], testicular atrophy [26], infertility [27], or gonadal

dysgenesis [28]. All these symptoms, together with poor

semen quality, might be part of one entity, newly termed

testicular dysgenesis syndrome [29] that may result from

disruption of embryonic gonadal development [30–32].

In men, testicular cancer arises from carcinoma in situ
cells, which are thought to derive from PGCs that have

escaped normal differentiation. Human testicular cancers

demonstrate consistent abnormalities in chromosome 12,

such as the presence (gain) of isochromosome 12p, i(12p)

([33]; for an updated review see [34]). Several genes map

to this region, including cyclin D, the cyclin-dependent

kinases (CDKs) 2, 4 and 6, Ras, p53 and mdm-2 [35], and

indeed some of these genes are deregulated in testicular

cancer [36–39]. A correlation has also been shown

between altered expression of p53 and mdm-2 and tes-

ticular cancer incidence [40,41], consistent with observa-

tions on the role of p53 in mouse teratocarcinoma [42].

Recently, other known and novel genes amplified from

gain of the entire short arm of chromosome 12 or ampli-

fication of 12p11.2-p12.1 found in testicular cancers were

determined by microarray analysis [43]. Interestingly, the

Nanog gene, which maintains ES cell pluripotency

[44��,45��], maps to mouse chromosome 6, the syntenic

region of human chromosome 12 [46].

Genes that localize to different genomic regions are also

overexpressed in testicular cancers. For example, over-

expression or activation of c-Kit in germ cells may lead to

cellular transformation [47,48]. These are interesting

observations given the important role that c-Kit plays in

PGC growth. Elevated Myc expression or loss of expres-

sion of the RB tumor-suppressor gene are also correlated

with germ cell tumors [49,50]. These data suggest an

unusual deregulated G1–S checkpoint in germ cell tumors.

Embryonic germ cells: the ‘other’ pluripotent
stem cell
Derivation of EG cells provides a unique insight into the

formation of pluripotent stem cells. PGCs are cultured by

dissociating isolated embryo fragments containing PGCs

and placing the resultant single-cell suspension onto pre-

formed feeder layers of irradiated fibroblasts [12]. Feeder

layers produce factors such as KL that are required for

PGC survival and also factors that stimulate PGC prolif-

eration [51–53]. In culture, PGCs are mortal, proliferate for

7–10 days, and then disappear either because they differ-

entiate or die. They may differentiate in vitro over the

same time period as they would in vivo [12–14]. But when

PGCs are exposed to three polypeptide growth factors —

KL, leukemia inhibitory factor (LIF) and basic fibroblast

growth factor (bFGF) — they continue to proliferate and

form large colonies of cells that can be expanded indefi-

nitely [54,55]. Those cells, which we termed EG cells,

continue to express the PGC markers TNAP and Oct4,

which are also ES and EC cell markers. Assays of devel-

opmental potential show EG cells to be pluripotent.

Human PGCs exposed to the same growth factors also

form EG cells that are pluripotent [56], suggesting that

several of the pathways regulating germline development

have been conserved throughout mammalian evolution.

Like human ES cells, human EG cells are thought to have

tremendous potential for treatment of human disease and

for analysis of human development (reviewed in [1,6,57]).

Each of the growth factors required for EG cell derivation

activates unique signal transduction pathways but there is

also considerable overlap in the downstream effectors that

are activated. Most likely KL and LIF act as survival

factors and co-mitogens to control PGC survival and

proliferation [51–53,58]. Activation of the signaling com-

ponent of the LIF receptor, gp130, is required for PGC

survival in vivo and in vitro. Binding of ligand to the LIF

receptor complex causes gp130 to associate with the Janus

kinases (JAKs), which in turn transduce intracellular

signals via the signal transducers and activation of tran-

scription (STATs). PGCs are severely depleted in gp130

knockout mice [59] and treatment of cultured PGCs with

a blocking gp130 antibody causes apoptosis [60]. There-

fore, gp130-mediated signaling is required for PGC sur-

vival and together with c-Kit signaling promotes PGC

proliferation [61].

But KL and LIF together do not cause PGC conversion to

EG cells. Therefore, the factor that seems to deserve
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most attention is bFGF. bFGF action is mediated by high

affinity FGF RTKs (FGFRs) and low affinity binding

heparan sulfate proteoglycans [62,63]. Binding of bFGF

to cells causes FGFR dimerization and receptor autophos-

phorylation, in turn leading to recruitment of cytoplasmic

FGFR binding proteins [62,63]. How might bFGF affect

PGC growth? A critical issue is whether bFGF acts

directly on germ cells or whether it acts via the feeder

layer. Interpreting bFGF function in culture is compli-

cated because cultures contain PGCs, the feeder layer

and embryonic somatic cells derived from the gonad.

PGCs themselves express FGFRs [64] but probably

many cell types in culture do also. Our own feeling is

that bFGF acts directly on PGCs to effect conversion

into EG cells because exposure of PGCs to bFGF for as

little as 12 hours is sufficient for EG cell formation (PJ

Donovan, MP de Miguel, unpublished observations).

Moreover, once EG cells are established, bFGF is then

no longer required for their growth ([54]; PJ Donovan, MP

de Miguel, unpublished observations). Some studies

suggest that bFGF can be replaced by retinoic acid or

agents that activate cAMP such as forskolin [60]. The

significance of these observations is unclear but if we can

understand how they substitute for bFGF that might

provide important clues about the molecular mechanisms

underlying the PGC to EG cell conversion.

PTEN ways to make pluripotent stem cells
If bFGF does act directly on PGCs, how might it act to

effect EG cell formation? The signal transduction path-

ways activated by KL, LIF and bFGF have been studied

in many cell types and numerous downstream targets

have been identified. Interestingly, several proteins in

these signaling pathways — Myc, Ras and cyclin D/

CDK4 — are overexpressed in human germ cell tumors,

perhaps suggesting shared mechanisms of stem cell or-

igin. Clearly there is considerable overlap in signaling

downstream of the KL, bFGF and LIF receptors

(Figure 2). Activation of these receptors leads to activa-

tion of pathways including phosphatidylinositol 3-kinase

(PI3K)/AKT/mTOR/p70S6K [65,66], Ras/mitogen-

activated protein kinase kinase (MEK)/mitogen activated

protein kinase (MAPK) [67], the JAK/STAT [68] and the

Src signaling pathways [67]. Despite this overlap, the

ultimate downstream targets of these three pathways

may be distinct. Signal transduction pathways may be

constructed in a modular fashion, utilizing scaffolds that

effectively separate and distinguish each of the pathways

while at the same time allowing interpolation of various

growth and differentiation signals [69,70]. What might

distinguish the different signaling pathways from each

other may be their more downstream targets such as

cyclins and CDKs (for a review, see [71]). Cyclin/CDK

complexes could be critical in regulating PGC growth

(Figure 2). Thus, the decision of whether a PGC either

survives, proliferates or differentiates might involve inte-

gration of signals from multiple inputs. A critical problem,

therefore, is to identify the downstream targets of the

various signal transduction pathways.

To dissect signaling pathways in PGCs we have devel-

oped a novel system of retrovirally-mediated gene trans-

fer. We used mice expressing the receptor for the avian

leukosis virus (ALV) [72��]. PGCs from these mice can be

infected with ALVs and will express genes efficiently

from the ALV promoter. We dissected the role of the

AKT kinase in c-Kit signaling. These data suggest an

important role for AKT in mediating the survival effects

of c-Kit signaling. Expression of AKT promoted PGC

growth in the absence of KL and a dominant-negative

form of AKT inhibited PGC growth in the presence of KL

[72��]. These studies also point to a critical role for

mTOR/FRAP and p70S6K in mediating PGC survival

downstream of AKT. Our data also suggest that, in PGCs,

signaling via PI3K is not important for their survival [72��]
consistent with studies showing that mice expressing a

c-Kit receptor with a mutation in the PI3K binding site

have normal PGC numbers [73,74]. Therefore, in PGCs,

AKT may be activated by an unconventional mechanism

as in some other cell types. In many cell types, the tumor

suppressor PTEN — phosphatase and tensin homolog

deleted from chromosome 10 — is a critical regulator of

signal transduction pathways including AKT. To inves-

tigate the role of PTEN in PGC development, Kimura

et al. [75��] knocked out the PTEN gene in PGCs using a

Cre-lox strategy. Three important effects of PTEN dele-

tion were observed. First, PGCs derived from PTEN null

animals proliferate more extensively. Second, PGCs from

PTEN null mice were able to make EG cells more

efficiently. Third, mice lacking PTEN in PGCs devel-

oped a higher incidence of testicular teratocarcinoma.

Therefore, signaling downstream of PTEN seems to have

a critical role in regulating both PGC proliferation and

conversion to EG and EC cells [75��].

Signaling stemness
Some features of EG cell derivation might provide clues

as to how they are formed. First, the age of the PGCs

seems to be important. PGCs isolated from young (E8.5)

embryos make EG cells readily, whereas PGCs isolated

from older (E12.5) embryos make either few or no EG

cells [54,55,76–79]. Second, EG cell derivation efficiency

is affected by serum, because culture of PGCs in serum

replacement medium improves both PGC proliferation

and EG cell formation efficiency [80]. Third, loss of the

tumor suppressor PTEN increases PGC proliferation and

EG cell formation efficiency [75��]. Together, these data

suggest that EG cell formation is related in some way to

PGC mitotic status. Perhaps extended PGC proliferation

makes them susceptible to conversion into EG cells or

sustained proliferation could inhibit PGC differentiation.

Intriguingly, the observation that EG cell formation is

associated with extended PGC proliferation is reminis-

cent of the original description that EC cells arise from

466 Differentiation and gene regulation

Current Opinion in Genetics & Development 2003, 13:463–471 www.current-opinion.com



small nests of cells that continue to proliferate in embryo-

nic gonads [17,81].

How, then, does this combination of growth factors act on

PGCs to effect their conversion to EG cells? The factors

that control developmental potency in mammals are still

being elucidated and include the following: the Oct4

POU domain transcription factor (reviewed in [82]);

the STAT3 transcriptional activator (reviewed in [83]);

the HMG-box protein SOX2 [84�]; the forkhead tran-

scriptional regulator FoxD3 [85�]; and the recently-

described Nanog protein [44��,45��]. But both Oct4

and Nanog are expressed in PGCs as they are in plur-

ipotent stem cells such as ES and EG cells [44��,45��,86].

So PGC potency cannot be regulated simply by manip-

ulating the expression of these two proteins. Activation of

gp130 is required for PGC survival both in vivo and

in vitro [59,60]. Because STAT3 is one of the key down-

stream targets of gp130-signaling, it could function in

germline development. But the role of STAT3 in PGC

growth remains unresolved. In ES cells, the balance

between the STAT3 and MAPK pathways plays an

important role in regulating the choice between either

self-renewal or differentiation [83,87,88]. An important

issue is whether interplay between different growth factor

signaling pathways in PGCs influences choices between

either self-renewal or differentiation.

Two other factors that can regulate developmental

potency are SOX2 and FoxD3 but little is known about

their role in PGCs. Another interesting question is how

molecules that distinguish PGCs from ES, EC and EG

cells such as the RNA helicase mVasa might be regulated

during conversion of PGCs to stem cells. Indeed, growing

evidence suggests that an important aspect of mamma-

lian germline development involves controlling RNA

Figure 2
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Schematic representation of the putative signal transduction pathways downstream of KL, LIF and bFGF in PGCs. KL is expressed as a

transmembrane growth factor by the feeder cells (fibroblastic somatic cells) in the culture. Activation of the respective receptors by specific ligand

binding results in a cascade of signal transduction that results in activation of specific cyclin/CDK complexes. For simplicity, inhibitory interactions

between cytoplasmic molecules downstream of the ligand receptors are not depicted but these contribute to their levels of activation.
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localization and translation (e.g. see [89]). If and how those

processes are altered during formation of EG and EC cells

remains to be determined. Recent technological devel-

opments have improved the ability to manipulate PGCs

and test such hypotheses. Transgenic and ‘knock in’

technology have allowed either the expression or deletion

of genes exclusively in the germline [75��,90,91,92��].
Retroviral vectors have been shown to work efficiently

in PGCs and can be used to manipulate gene expression

in vitro [72��]. In vivo electroporation techniques have

been developed that allow gene expression in PGCs in

organ cultures of developing gonads [93]. These tech-

niques should allow the signal transduction pathways

regulating PGC growth to be comprehensively dissected.

Are embryonic germ cells and embryonal
carcinoma cells one and the same?
Are the EG and EC cell formation processes related in

some way? When embryonic gonads are grafted to ectopic

sites they make teratomas but only if the gonad is isolated

before E12.5 [94]. Similarly, EG cells can be formed from

PGCs up to E12.5 but not later. Therefore, the time

window during which either EC or EG cells can be made

from PGCs is remarkably coincident. Both EC and EG

cells are also pluripotent and express many of the same

markers [1]. Although EG cells contribute to all lineages

in chimeras [76], EC cells typically do not contribute to

the germline (reviewed in [1]). Most likely this reflects

EC cell aneuploidy that perhaps prevents them from com-

pleting some aspect of gametogenesis. It would be intri-

guing to test if EC cells, freshly isolated from theembryonic

gonad, would be able to make germline-competent chi-

meras. Finally, loss of PTEN leads to testicular tumor

formation in vivo and also EG cell formation in vitro
[75��], suggesting that the route from a PGC to either an

EC or a EG cell shares at least one genetic pathway.

Another important issue is whether growth factors required

for EG cell formation in vitro would drive EC cell forma-

tion in vivo. Although it would be difficult to expose

PGCs in embryonic gonads to factors directly, other

approaches could test this idea. Various gene promoters

can efficiently drive transgene expression in germ cells or

gonadal somatic cells [75��,90,91,92��,95,96]. Moreover,

retrovirally-mediated gene delivery or electroporation

can now be used to express factors in a variety of gonadal

cell types including PGCs [72��,93] allowing hypotheses

about PGC conversion to stem cells to be tested.

Embryonic germ cells, embryonal carcinoma
cells and epigenetics
How might increased PGC proliferation per se drive the

conversion to EG cells? Continued proliferation could

either impair or delay ongoing differentiation events, pro-

viding a window for reprogramming the developmental

potential of PGCs. During gametogenesis, PGCs must

erase imprints that mark chromosomes as to their parent

of origin [97–100]. That process likely involves covalent

modifications to histones, DNA and widespread chromatin

remodeling. At this time, PGCs might be most susceptible

to modifications of imprints. Perhaps extracellular signals

driving PGCs prematurely through the cell cycle prevent

correct re-establishment of imprinting marks in those cells.

This, in turn, might allow genes that are temporarily

silenced to be re-activated or genes that are active to be

silenced. Such alterations in gene expression likely under-

lie the changes in cell potency observed in the conversion

of PGCs to either EC or EG cells. Studies of imprinting in

EG cells demonstrate that, in many cases, they show

evidence of partial imprinting consistent with the idea that

imprints had either not been fully erased or re-established

in the PGCs from which they were derived [101,102].

Could the same events influence EC cell formation?

Using chromosome substitution strains of mice in which

entire chromosomes are transferred from one strain to the

other, it was demonstrated that mouse chromosome 19

could contain several genes with additive and epistatic

effect on EC cell formation. Alternatively, Youngren et al.
[19��] proposed that epigenetic modifications might be

imposed by the 129/Sv background on the donor-derived

chromosome 19. Epigenetic effects could silence any

gene on the donor-derived chromosome involved in

PGC development or in the process of testicular differ-

entiation and determination [19��]. Interestingly, the

majority of human infantile testis tumors exhibit biallelic

expression of imprinted genes, again suggesting that EC

cells are derived from PGCs that had erased imprints

[103]. It will be interesting to determine whether the

differences in the imprinting status of EC and EG cells

are either the cause or consequence of their origin.

Conclusions
The conversion of PGCs into pluripotent stem cells may

be linked in some way with their deregulated prolifera-

tion. How extended PGC proliferation leads to develop-

ment of EC or EG cells remains to be determined. The

development of new and rapid methods to identify tes-

ticular cancer susceptibility genes, coupled with genomic

information, will accelerate our understanding of the

genetic pathways regulating PGC differentiation and

developmental potency. Similarly, technological devel-

opments have improved our ability to identify genes

expressed in PGCs and to manipulate their expression.

These advances should allow us rapid dissection of sig-

naling pathways that regulate PGC growth and their

conversion into pluripotent stem cells. That information

could impact our thinking about the etiology of testicular

cancer, stem cell plasticity in general, and the molecular

mechanisms underlying nuclear reprogramming.

Update
A recent study [104] shows that there is a statistically

significant reduction in male PGC numbers at E13.5
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when a floxed allele of gp130 is deleted in PGCs by

TNAP-Cre-mediated excision. Given that the TNAP-

Cre allele is reported to be only 60% efficient at excision

of a reporter gene, these data suggest that gp130 does

have a role in PGC development.
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