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Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differen-
tiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in
regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated
how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes
place when germ cell syncytia within the ovary break down and germ cells are encapsulated by
pregranulosa cells. In the mouse, this occurs during the first 4–5 d of postnatal life. The expression
of Notch family genes in the neonatal mouse ovary was determined through RT-PCR measure-
ments. Jagged1, Notch2, and Hes1 transcripts were the most abundantly expressed ligand, recep-
tor, and target gene, respectively. Jagged1 and Hey2 mRNAs were up-regulated over the period
of follicle formation. Localization studies demonstrated that JAGGED1 is expressed in germ cells
prior to follicle assembly and in the oocytes of primordial follicles. Pregranulosa cells that surround
germ cell nests express HES1. In addition, pregranulosa cells of primordial follicles expressed
NOTCH2 and Hey2 mRNA. We used an ex vivo ovary culture system to assess the requirement for
Notch signaling during early follicle development. Newborn ovaries cultured in the presence of
�-secretase inhibitors, compounds that attenuate Notch signaling, had a marked reduction in primor-
dial follicles compared with vehicle-treated ovaries, and there was a corresponding increase in germ
cells that remained within nests. These data support a functional role for Notch signaling in regulating
primordial follicle formation. (Endocrinology 150: 1014–1024, 2009)

Ovarian follicles are the functional units within the female
gonad that nurture maturation of the oocyte and enable

production of steroid hormones. Follicles are comprised of three
cells types: oocytes, surrounding granulosa cells, and an external
thecal cell layer. Select numbers of follicles mature in response to
circulating gonadotropins and to the local actions of growth
factors during the female reproductive cycle (1). Follicle matu-
ration continues until ovulation, when an egg or eggs competent
for fertilization are extruded from the ovary and the remaining
somatic cells of the follicle luteinize. Although much is known
about how secondary follicles progressively develop into pre-
ovulatory follicles, the molecular events mediating primordial
follicle formation and initial follicle growth are less clear.

In mice, primordial germ cells migrate to the urogenital ridge
around embryonic d 11 (2). By embryonic d 13.5, synchronous

rounds of mitotic division in the female gonad yield clusters of
oocytes arranged in syncytia commonly referred to as cysts or
nests. (3). Syncytia persist until germ cells undergo a wave of
apoptosis near the time of birth (4). During programmed nest
breakdown, germ cells are encapsulated by squamous somatic
cells (pregranulosa cells) to generate primordial follicles. The
newborn mouse ovary contains few primordial follicles, whereas
at postnatal d 2 approximately 40% of germ cells are within
primordial follicles (4). This number increases to greater than
80% by postnatal d 6 (4, 5). Perturbations during the critical
period of primordial follicle formation can significantly affect
the size of the primordial follicle pool and follicular phenotypes.
For example, administration of activin to neonatal mice in-
creases the primordial follicle pool by 30% (5), whereas the
ovaries of neonatal mice injected with estradiol, the synthetic
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estrogen diethylstilbestrol, or the phytoestrogen genistein de-
velop multioocytic follicles (MOFs) (6–10). MOFs, which have
two or more germ cells trapped within a follicle boundary (6, 7),
are also observed in mouse ovary cultures treated with estradiol
(11). These structures likely arise from incomplete breakdown of
germ cell nests.

Contacts between germ cells and somatic cells are established
as early as embryonic d 13.5 in the mouse ovary (4). Thus, com-
munication between germ cells and pregranulosa cells is likely
important for orchestrating follicle assembly. Given the many
roles of the Notch signaling pathway in cell communication and
morphogenesis, this pathway is a likely candidate for regulating
early follicle development. Notch signaling affects cell fate dur-
ing embryogenesis and in turn influences cell proliferation, dif-
ferentiation, and apoptosis (12).

Originally characterized in Drosophila and Caenorhabditis
elegans, components of the Notch pathway have several mam-
malian orthologues. These include four Notch receptors
(Notch1–4), and five Notch ligands: Jagged1, Jagged2, Delta-
like 1, Delta-like 3, and Delta-like 4 (13). Notch ligands belong
to the Drosophila homolog Delta and Serrate, and the C. elegans
homolog Lag-2 (DSL) family of proteins (14). Notch genes en-
code conserved transmembrane receptors, and the DSL ligands
are also membrane bound. Signaling occurs between apposing
cells that express Notch receptors and DSL ligands. After ligand
binding, a cascade of proteolytic cleavages of the Notch receptor
ensues (15). The active form of Notch, the Notch intracellular
domain, is generated by cleavage at the receptor juxtamembrane
region by the �-secretase complex (16). Liberated Notch intra-
cellular domain translocates into the nucleus in which it associ-
ates with the transcriptional regulator C-promoter binding fac-
tor 1/suppressor of hairless/Lag-1 (CSL) to promote Notch target
gene transcription (13). Well-characterized Notch target genes
include two families of basic-helix-loop-helix transcription fac-
tors: hairy and enhancer of split (Hes) and a related family (Hes
related with YRPW motif, hairy related transcription factor)
(17–20). Depending on the cellular context, Notch signaling is
reduced or potentiated by Fringe proteins, a class of glycosyl-
transferases that modify the receptor (21). In mammals, the three
Fringe proteins that modulate Notch signaling are Lunatic,
Manic, and Radical Fringe (22). Interestingly, the Lunatic Fringe
knockout mouse ovary exhibits meiotic defects and develops
MOFs (23). An analogous phenotype occurs in the Drosophila
gonad, in which the absence of Notch signaling during egg cham-
ber formation results in fused egg chambers (24). Taken to-
gether, these data suggest that Notch signaling may have con-
served roles in follicle development within the female gonad.

We tested the hypothesis that Notch signaling is required for
follicle assembly in the mouse ovary. Our studies centered on the
interval between birth and postnatal d 4, the time period when
most primordial follicles form in the mouse. We found that
Notch receptors and ligands were expressed in a complementary
pattern in the neonatal mouse ovary, with Notch2 in granulosa
cells and Jagged1 in germ cells. Germ cell nests were retained and
primordial follicles were reduced in ovaries cultured with
�-secretase inhibitors that suppress Notch signaling. These data

support a functional role for Notch signaling in regulating pri-
mordial follicle formation.

Materials and Methods

Animal treatment and tissue collection
CD-1 mice (Harlan, Indianapolis, IN) were maintained on a 12-h

light, 12-h dark cycle (lights off at 1700 h) with food and water available
ad libitum. Breeders (90–180 d old) were fed with a soy-free mouse chow
(Harlan 7926) to limit exogenous phytoestrogen intake through food.
Matings were timed, and vaginal plug detection was considered d 0.5 of
pregnancy. Ovaries were collected from newborn mice (within 2 h of
birth) or mice at different postnatal times. Day 0 marks the first 24 h after
birth. Ovaries were either stored at �80 C for subsequent RNA isolation,
immediately fixed for follicle counting and immunohistochemical stud-
ies, or prepared for ex vivo culture. Animals were cared for in accordance
with all federal and institutional guidelines.

Antibodies and inhibitors
Jagged1 (SC-6011) and Notch2 (SC-5545) polyclonal antibodies

were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA),
and used at a 1:50 and 1:100 dilution, respectively. A monoclonal
Notch2 antibody (C651.6DbHN) was provided by the Iowa Develop-
mental Studies Hybridoma Bank (Iowa City, IA) and used at 8 �g/ml. A
Hes1 polyclonal antibody (25) was kindly provided by Dr. Tetsuo Sudo
(Toray Industries Inc., Tokyo, Japan) and used at a 1:500 dilution.
�-Secretase inhibitors (5S)-(t-butoxycarbonylamino)-6-phenyl-(4R)hy-
droxy-(2R)benzylhexanoyl)-L-leu-L-phe-amide (L-685,458; L1790) and
N-(N-(3,5-difluorophenacetyl)-L-alanyl)-S-phenylglycine t-butyl ester
(DAPT; D5942) were purchased from Sigma-Aldrich (St. Louis, MO).

Semiquantitative RT-PCR and real-time PCR
For semiquantitative PCR studies, dissected ovaries from postnatal d

3 CD-1 mice were stripped of the bursal sac and immediately frozen. An
RNeasy kit (QIAGEN, Valencia, CA) was used to isolate RNA from
pooled ovaries (n � 12), and 500 ng RNA was reverse transcribed using
avian myeloma virus reverse transcriptase. One quarter of the resulting
cDNA was used in PCRs. Primers for ribosomal protein RPL19 were
used as a control, and PCRs were run for 26 cycles. 32P-dCTP was in-
corporated during PCR, and products were visualized after exposing
dried gels to Hyperfilm (GE Healthcare, Piscataway, NJ). (See supple-
mental Table 1, published as supplemental data on The Endocrine So-
ciety’s Journals Online web site at http://endo.endojournals.org, for
primer sequences and amplicon sizes). For real-time PCR experiments,
ovaries were dissected from d 0, 2, 6, and 18 CD-1 mice. One microgram
of RNA from each set of pooled ovaries (n � 12–14 for d 0–6; n � 2 for
day 18) was used for each reverse transcription reaction, and 100 ng of
cDNA served as the template for PCR. Real-time PCR assays were per-
formed using SYBR Green PCR master mix (Applied Biosystems, Foster
City, CA), and mouse RPL19 served as the internal control (26). The
comparative cycle threshold (Ct) method (��Ct) was used for relative
quantification (27). To examine mRNA expression in cultured ovaries,
two ovaries were pooled, and eluates from RNeasy columns were pre-
cipitated. RNA samples were resuspended in a small volume of dieth-
ylpyrocarbonate water, and real-time PCR experiments were performed
using 50 ng of cDNA. Relative mRNA values were normalized to RPL19.

In situ hybridization
Ovarian sections from CD-1 mice were processed for in situ hybrid-

ization as previously described (28), with modifications. A 630 bp Hey2
fragment was amplified from d 18 mouse cDNA and cloned into the
pcDNA3 vector (Invitrogen Corp., Carlsbad, CA). Primers used to gen-
erate the Hey2 amplicon were: forward 5�-TGAAGATGCTCCAGGC-
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TACAGG-3� and reverse 5�-ATACCGACAAGGGTGGGCTGAT-3�. A
Hey2 riboprobe was prepared using digoxigenin-11-UTP (Roche Ap-
plied Science, Indianapolis, IN) and the Riboprobe combination system
(Promega Corp., Madison, WI). Detection of mRNA was achieved using
a digoxigenin-AP antibody (Roche Applied Science, Indianapolis, IN)
and the nitro blue tetrazolium chloride/5-bromo-4-chloro-3-indolyl-
phosphate, 4-toluidine salt substrate (Sigma-Aldrich).

Immunohistochemistry
Ovaries harvested from CD-1 mice were fixed in 4% paraformalde-

hyde overnight at 4 C. Before tissue processing, samples were dehydrated
with 50 and then 70% ethanol. Ovaries were further dehydrated through
a graded series of ethanols and infiltrated with paraffin. Embedded sam-
ples were sectioned at 5 �m. Tissue sections were dewaxed and then
rehydrated. Antigen retrieval was performed by microwaving samples on
high power for 2 min and on low power for 7 min in 0.01 M sodium citrate
(pH 6). After incubating in 3% H2O2/PBS for 15 min to block endoge-
nous peroxidase activity, tissue sections were blocked with avidin/biotin
reagents (Vector Laboratories, Inc., Burlingame, CA). Blocking was
achieved by immersing slides in a solution containing 10% serum for 1 h
at room temperature. Samples were incubated with primary antibodies
diluted in blocking serum overnight at 4 C and were then exposed to
biotin-conjugated secondary antibodies (1:200 dilution; Vector Labo-
ratories) for 30 min at room temperature. The ABC reagent (Vectastain
Elite ABC kits; Vector Laboratories) was used according the manufac-
turer’s instructions. All washes were performed in PBS-Tween 20 after
incubations with antibody and ABC reagent. The 3,3�-diaminobenzidine
substrate (Vector Laboratories) was used for colorometric detection, and
samples were counterstained with hematoxylin. A proliferating cell nu-
clear antigen staining kit (Zymed Laboratories, South San Francisco,
CA) was used to identify proliferating cells in tissue sections. Terminal
deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick
end labeling (TUNEL) staining was performed using the DeadEnd flu-
orometric TUNEL system kit (Promega) to assess cellular apoptosis. All
sections processed for fluorescence detection were mounted in medium
containing 4�,6-diamidino-2-phenylindole (Vector Laboratories). Im-
munohistochemical images were acquired on a Nikon E600 microscope
using a Spot Insight Mosaic 11.2 color digital camera (Diagnostic In-
struments, Sterling Heights, MI) and Advanced Spot Imaging software
(version 4.6; Universal Imaging, Downington, PA). Immunofluorescent
images were generated using a Leica DM5000B fluorescence microscope
and OpenLab 4.0 software (Improvision, Lexington, MA).

Organ culture and morphometric analysis
Ovaries from newborn CD-1 mice were dissected and the bursal sac

removed in PBS. Ovaries were placed in 5-�l drops of media and cultured
for 4 d on 0.4-�m floating filters (Millicell-CM; Millipore Corp., Bil-
lerica, MA) at 37 C in a chamber containing 5% CO2. Filters were placed
in 14-mm culture wells and rested on top of 0.4 ml DMEM-F12 media
supplemented with 0.1% Albumax (Invitrogen), penicillin-streptomycin
(Invitrogen), 0.1% BSA (Sigma), 27.5 �g/ml transferrin (Sigma), and
0.05 mg/ml L-ascorbic acid (Sigma). Culture medium contained 1, 10, or
50 �g/ml insulin (Sigma) and was changed daily. The media formulation
was adapted from Kezele and Skinner (29). In studies using �-secretase
inhibitors, ovaries were cultured for 1, 2, or 4 d in media containing either
10 �M L-685,458 or 20 �M DAPT. Vehicle-treated ovaries were cultured
in media containing 0.2% dimethylsulfoxide (DMSO). Cultured ovaries
were fixed in 4% paraformaldehyde and stained with hematoxylin and
eosin. To compare follicle formation between in vivo and cultured ova-
ries, ovaries were isolated from littermate animals the same day cultured
ovaries were fixed. Follicle populations among isolated and cultured
ovaries were quantified. Ovaries were sectioned at 5 �m, and follicles
were counted in every fifth section as described elsewhere (5) to avoid
duplicate counts. Images of ovarian sections were analyzed using ImageJ
software (National Institutes of Health, Bethesda, MD), and follicles
were manually counted by two individuals. Germ cells not surrounded
by pregranulosa cells were scored as unassembled (remaining in nests).

Oocytes surrounded by pregranulosa cells or a mixture of squamous and
cuboidal somatic cells were scored as primordial follicles. Primary and
secondary follicles were scored when oocytes were surrounded by a sin-
gle or double layer of cuboidal granulosa cells, respectively. Primary and
secondary follicle counts were added together (developing follicles). Fol-
licle populations were expressed as a percentage of the total number of
germ cells counted.

Statistics
Data are presented as means � SEM. One-way ANOVA followed by

a Tukey-Kramer post hoc analysis was used for statistical comparisons
among multiple groups. ANOVA was performed using GraphPad
PRISM 4.0 (GraphPad Software, Inc., San Diego, CA). For statistical
comparisons between two groups, the Student’s two-tailed t test was
used. P � 0.05 was considered significant.

Results

Notch family genes are expressed in the neonatal
mouse ovary

Johnson et al. (30) described the expression patterns for sev-
eral Notch pathway genes in the adult mouse ovary. We inves-
tigated Notch gene expression in the neonatal mouse ovary dur-
ing the period when primordial follicles form. The d 0 mouse
ovary chiefly contains germ cells that are arranged in nests (sup-
plemental Fig. 1A). The ovarian architecture changes dramati-
cally 3 d into postnatal development as germ cell nests break-
down. Ovaries at this stage contain a heterogeneous population
of germ cell nests, primordial and primary follicles (supplemental
Fig. 1B). Because Notch signaling may affect processes mediating
germ cell nest breakdown and/or initial follicle growth, we used
neonatal d 3 ovaries for semiquantitative RT-PCR assays to de-
termine the expression profiles for Notch family genes. Tran-
scripts for all Notch receptors were expressed in the d 3 mouse
ovary, with Notch2 showing the highest expression (Fig. 1A).
Jagged1 and Jagged2 mRNAs were more abundant than the
Delta-like ligands in the neonatal ovary. Hes1 and Hey2 tran-
scripts showed the highest abundance of the eight Notch target
genes tested. We also examined the expression of the three Fringe
molecules, and Radical Fringe showed the strongest expression
(data not shown). We performed real-time PCR experiments to
determine whether Notch family genes, those strongly expressed
by d 3, were regulated during postnatal development (Fig. 1B).
There was no change in Notch2, Notch3, Jagged2, and Hes1
mRNA expression between d 0 and 6, but a significant decrease
was observed in d 18 ovaries compared with earlier ovaries (Fig.
1B). In contrast, Jagged1 mRNA increased 2.5-fold during the
peak period of follicle formation, between d 0 and 6, and then
declined such that by d 18 (prepubertal), the level of Jagged1
transcript was similar to that found in d 0 ovaries (Fig. 1B). Hey2
mRNA increased 5-fold between d 0 and 6 and then increased
further, 10-fold, in d 18 ovaries compared with d 0 ovaries (Fig.
1B). These data show that multiple Notch genes are expressed
and dynamically regulated during the time of follicle formation.

Immunohistochemical experiments were used to determine
the cellular localization of NOTCH2, JAGGED1, and HES1
proteins (Fig. 2). NOTCH2 was expressed in pregranulosa cells
of the newborn mouse ovary (Fig. 2A). Light NOTCH2 staining
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was also observed in germ cells of the newborn mouse ovary.
NOTCH2 was localized predominantly in the pregranulosa
cells of primordial follicles and granulosa cells of primary
follicles in the d 3 ovary (Fig. 2B and supplemental Fig. 2A).
In contrast, JAGGED1 was expressed in germ cells of germ cell
nests in the newborn ovary (Fig. 2C). At d 3, JAGGED1 con-
tinued to be expressed in oocytes of primordial and primary
follicles (Fig. 2D and supplemental Fig. 2B). HES1 was ex-
pressed in pregranulosa cells that surround germ cell nests
(Fig. 2E) in the newborn ovary. HES1 expression was main-
tained in pregranulosa cells surrounding primordial follicles
in the d 3 ovary, whereas oocytes of early primary follicles also
stained positively for HES1 (Fig. 2F). Due to the lack of a
reliable Hey2 antibody, we examined Hey2 mRNA localiza-
tion via in situ hybridization. Hey2 transcripts were expressed
in the pregranulosa cells and oocytes of follicles in the d 3
ovary (Fig. 3A and supplemental Fig. 2C). RT-PCR experi-
ments verified that Hey2 transcripts are expressed in purified
preparations of primary granulosa cells (data not shown).
Incubation of d 3 ovary sections with a sense Hey2 probe
revealed negligible staining (Fig. 3B). Thus, at a time when
follicle formation is occurring, JAGGED1 and NOTCH2 are
expressed in germ cells and pregranulosa cells respectively,
consistent with reports in Drosophila (24) in which Notch
ligand-receptor pairs mediate germ cell-somatic cell interac-
tions. That NOTCH2 and HES1 are expressed in early gran-
ulosa cells suggests that the Notch pathway is active at the
time of follicle assembly.

Ex vivo ovary culture
Collectively, our gene expression and immunohistochemistry

data support the hypothesis that Notch signaling occurs during
early folliculogenesis, but how Notch functions during this pe-
riod of ovary development is unknown. Although Notch3 and
Notch4 knockout animals are viable and fertile (31, 32), targeted
disruption of other Notch receptor or ligand genes results in
either embryonic or perinatal lethality (33). An alternative
method for disrupting the function of proteins is through the use
of small molecule inhibitors, a strategy that has been successfully
performed in ex vivo organ culture experiments (34). Thus, we
used an ex vivo ovary culture system to address functional roles
for Notch signaling during follicle assembly. In this system, new-
born mouse ovaries are maintained in culture for 4 d, a time span
that allows for follicle formation. To validate the organ culture
system, we compared follicle formation and initial growth be-
tween cultured and in vivo ovaries. Cultured ovaries and ovaries
isolated from littermate animals were fixed and stained for his-
tological analysis at the end of the 4-d culture period. Isolated
and cultured ovaries contained primary follicles in the medulla of
the ovary and primordial follicles in the ovarian cortex (supple-
mental Fig. 3, A and B). Although primordial follicles formed in
this ex vivo culture system, isolated ovaries contained 10% more
primordial follicles than cultured ovaries (supplemental Fig. 3C).
In addition, isolated ovaries had significantly more developing
follicles (primary and secondary) compared with cultured ova-
ries (supplemental Fig. 3C). The ovary culture duration and
media formulation may account for the lower percentage of
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developing follicles in cultured ovaries. Immunolocalization
experiments revealed that JAGGED1 and HES1 proteins were
expressed in the same cell types as observed in isolated ovaries
(supplemental Fig. 3, D and E). Isolated and cultured ovaries
displayed a similar distribution and number of apoptotic (Fig. 4,
A and B) and proliferating cells (Fig. 4, C and D). Thus, the
culture conditions do not appear to cause cell death, and somatic
cells continue to proliferate normally. These findings suggest that
follicle dynamics and Notch family protein expression in ex vivo
cultured ovaries are similar to those of in vivo ovaries.

Attenuating Notch signaling decreases primordial follicle
formation

Because primordial follicles assemble in this culture system,
weused this exvivoapproach in subsequent studies to investigate
follicle formation. We tested the ability of two chemically dis-
tinct �-secretase inhibitors, DAPT and L-685,458 (35, 36), to
block Notch signaling in ovary cultures. We first validated the
efficacy of these compounds in cell lines known to express Notch

signaling components and demonstrated
that both inhibitors strongly suppress
Notch signaling without affecting cell via-
bility (supplemental Fig. 4). Hes1 and Hey2
are Notch target genes and thus provide a
measure of Notch signaling activity (37).
Therefore, we examined the mRNA expres-
sion of these genes in cultured ovaries
treated with vehicle or DAPT. Day 0 ovaries
cultured for 1 d with 20 �M DAPT displayed
a 35% decrease in Hes1 mRNA levels and a
90% decrease in Hey2 mRNA compared
with controls (Fig. 5A). Hey2 mRNA down-
regulation persisted when ovaries were cul-
tured for 4 d with DAPT (Fig. 5B). Similarly,
Notch2 mRNA decreased 30% upon DAPT
treatment for 1 d, and this level of receptor
down-regulationwasmaintainedwhenova-
ries were treated for 4 d with the inhibitor
(Fig. 5, A and B). In contrast, Jagged1 and
glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) mRNA levels were not
changed by DAPT (Fig. 5). These studies re-
veal that Notch signaling can be suppressed
by culturing ovaries with a �-secretase
inhibitor.

To examine the actions of Notch during
early follicle development, ovary cultures
were treated with DAPT or L-685,458 for
4 d, and the ovarian histology was analyzed.
Ovaries treated with DMSO for 4 d were
chiefly composed of primordial follicles.
Some small germ cells nests persisted in
these ovaries and were found near the ovar-
ian cortex (Fig. 6A). Conversely, DAPT-
treated ovaries showed expanded tracts of
germ cells not assembled into follicles (Fig.
6B). Follicle counting data revealed that

DAPT-treated ovaries had a significantly reduced percentage of
primordial follicles, 35 vs. 58% for controls, and a correspond-
ingly significant increase in the percentage of germ cells remain-
ing in nests, 64 vs. 42% for controls (Fig. 6E). There was no
significant difference in the percentage of more advanced, de-
veloping follicles between vehicle and inhibitor-treated ovaries
(Fig. 6E), although the number of these follicles is low. Similar to
DAPT, L-685,458-treated ovaries displayed reduced germ cell
nest breakdown compared with controls (Fig. 7, A and B).
L-685,458-treated ovaries had a lower percentage of primordial
follicles, 48 vs. 64% for controls, and this was accompanied by
a rise in the percentage of germ cells not encapsulated by somatic
cells, 50 vs. 34% for controls (Fig. 7E). Vehicle and L-685,458-
treated ovaries had comparable percentages of developing folli-
cles (Fig. 7E). Ovaries exposed to L-685,458 and cultured in
media containing 50 �g/ml insulin had a higher percentage of
developing follicles than that found in DAPT-treated ovaries,
which were cultured in media containing 1 �g/ml insulin. This is
expectedbecause insulinhasbeen shownpromote theprimordial
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to primary follicle transition (38). Regardless of the insulin con-
centration used in the ex vivo culture studies, we observed a
marked affect on follicle formation upon �-secretase inhibitor
treatment.

Our inhibitor experiments suggest that Notch signaling pro-
motes primordial follicle formation, but the mechanism for how
this occurs is unknown. Notch signaling is a regulator of apo-

ptosis and has been shown to have antiapoptotic properties in
different contexts (39). Therefore, we examined cell death in
newborn mouse ovaries cultured for 1, 2, or 4 d with DAPT, the
inhibitor most potent in preventing primordial follicle forma-
tion. We observed apoptosis in both germ and somatic cell com-
partments (Fig. 8B). Ovaries treated with DAPT for 1 and 2 d
contained more apoptotic cells than controls, whereas the num-
ber of TUNEL-positive cells was comparable between vehicle
and inhibitor-treated ovaries after 4 d of culture (Fig. 8C). The
small but significant changes we observe in ovaries treated with
DAPT for 1 and 2 d may reflect a role for Notch signaling in
promoting cell survival.

Discussion

Aberrations in ovarian follicle maturation can inhibit the proper
development of the oocyte and thus impact fertility. This is best
evidenced by a variety of human diseases (40, 41) and mouse
mutations (42, 43) that affect folliculogenesis. The first follicles
that form, primordial follicles, establish a resting pool from
which a small number of selected follicles will develop through-
out the reproductive lifespan. Bidirectional communication be-
tween oocytes and granulosa cells is crucial for this maturation
process (44, 45). Communication between germ cells and pr-
egranulosa cells likely occurs during early folliculogenesis, and
this is highlighted by the finding that somatic cells fail to form
follicular structures in ovaries devoid of germ cells (46). Disrup-
tion of either germ cell- or somatic cell-derived factors, i.e. FIG�

and Wnt4, respectively (47, 48), can lead to defects in follicle

B
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FIG. 3. In situ hybridization for Hey2 mRNA in the d 3 ovary. Ovary sections
were incubated with either an antisense Hey2 (A) or sense Hey2 (B) probe. Hey2
transcripts were expressed in pregranulosa cells (A, arrows) and oocytes (A,
double arrow) of primordial follicles. Scale bars, 25 �m. GR, Pregranulosa cells;
Oo, oocytes.
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FIG. 4. Cellular dynamics in cultured and in vivo ovaries. The TUNEL assay was
used to determine the distribution of apoptotic cells between isolated (A) and
cultured ovaries (B). Newborn mouse ovaries were cultured for 4 d.
Immunohistochemistry for proliferating cell nuclear antigen (PCNA) was used to
assess cell proliferation in isolated (C) and cultured ovaries (D). The concentration
of insulin used in these ovary culture studies was 50 �g/ml. Scale bars, 40 �m (A
and B); 50 �m (C and D).
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formation. Insights into how primordial follicles assemble may
provide an avenue to better treat reproductive disorders that
negatively affect fertility.

We provide evidence for the expression of Notch pathway
genes in the neonatal mouse ovary and propose a novel role for
Notch signaling in regulating primordial follicle formation.
JAGGED1 and NOTCH2 are expressed in oocytes and granu-
losa cells, respectively, expression patterns that are consistent
with what has been reported in the adult mouse ovary (30). The
complementary expression pattern of JAGGED1 and NOTCH2
provides a potential role for these molecules in mediating inter-
actions between the germ and somatic cell compartments during
early follicle development. The total number of germ cells de-
creases between d 0 and 6 (4), so increased Jagged1 mRNA may
reflect enhanced production by the remaining germ cells and
relate to the initial growth of primordial follicles. In the neonatal
mouse ovary, the expression of Notch receptor genes are not
coordinated with Jagged1, rather the mRNA levels are maximal
compared with the prepubertal ovary. We cannot exclude more
localized changes in Notch gene expression at the cellular level.
HES1 is expressed in both pregranulosa cells surrounding germ

cell nests and also in oocytes of early primary follicles. That
HES1, a transcription factor, is not expressed inoocytenuclei but
rather in the cytoplasm raises the possibility that it is not active
in germ cells. Interestingly, Hey2 mRNA is up-regulated during
follicle formation and initial growth. The expression pattern of
Hey2 mRNA in the neonatal ovary is similar to HES1 protein:
pregranulosa cells of primordial follicles and oocytes of primary
follicles. The low levels of Hey2 mRNA in the d 0 ovary indicate
that Hey2 may be expressed later than Hes1 during early fol-
liculogenesis. Indeed, microarray studies point toward Hes1 and
Hey2 being enriched in somatic cells at 18 d post coitum and 2
d postnatal, respectively (49). Future experiments are required to
determine whether HEY2 is expressed in pregranulosa cells sur-
rounding germ cell nests.

NOTCH2/HES1 and JAGGED1 are expressed in distinct
cells before follicle formation, pregranulosa cells, and germ cells,
respectively, suggesting that germ cell nest breakdown is in part
coordinated through cellular interactions via Notch signaling.
Notch activation would then appear to directly impact pregranu-
losa cells and may promote the proliferation of pregranulosa
cells during follicle assembly. Enhanced somatic cell prolifera-

FIG. 6. Phenotypes of ovary cultures treated with vehicle and DAPT. Newborn mouse ovaries cultured for 4 d in media containing 0.2% DMSO (A) or 20 �M DAPT (B)
were fixed and then H�E stained. Germ cell nests are indicated by black boundaries. C and D, Enlarged images of the black rectangles in A and B. E, Follicle
populations in DMSO- (n � 4) and DAPT (n � 5)-treated ovaries were quantified. The concentration of insulin used in these studies was 1 �g/ml. The graph represents
average follicle counts from ovaries cultured in three independent experiments. Scale bars, 50 �m. *, P � 0.05.
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tion has been reported to be a potential mechanism for driving
increased follicle formation (5). Alternatively, Notch signaling
mayserve to establishgranulosa cell identity, aproperty thatmay
be essential for subsequent primordial follicle assembly. Pr-
egranulosa cells fail to differentiate and transition to cuboidal
granulosa cells in Foxl2 null mouse ovaries (43). Ovaries from
these animals exhibit early follicular depletion (43) and potential
defects in follicle formation (50), demonstrating the potential ties
between granulosa cell differentiation and follicle assembly.
Notch signaling has also been shown to support cell migration
(51). During germ cell nest breakdown, Notch signaling may
mediate pregranulosa cell migration within germ cell syncytia to
facilitate primordial follicle assembly.

Rodent ovary culture has been successfully performed by
other investigators (29, 52–55) to ascertain roles for signaling
molecules during early follicle development. We observe a reca-
pitulation of in vivo follicle formation in this system, arguing that
factors important for follicle assembly are intrinsic to the ovary.
Newborn mouse ovaries maintained in culture were treated with
�-secretase inhibitors to address functional roles for Notch in the
neonatal mouse ovary. We used small-molecule inhibitors to
maximize the chance of attenuating Notch signaling because all

four Notch receptors are processed by �-secretase. �-Secretase
belongs to a class of aspartyl proteases that have multiple sub-
strates (56). Although other targets may be affected by these
inhibitors, we observed no decrease in GAPDH or Jagged1
mRNA expression. Our apoptosis studies show that cell death is
limited in DAPT-treated ovaries. The viability of cells cultured
with DAPT argues against a toxic effect of the inhibitor on ex
vivo cultured ovaries. A more likely possibility is that the increase
in apoptotic cell numbers in ovaries treated with DAPT for 1 and
2 d reflects a potential role for Notch signaling in promoting cell
survival.

Treatment of ovary cultures with DAPT resulted in decreased
Notch target gene (Hes1, Hey2) expression. In addition, similar
ovarian phenotypes, namely germ cell nest retention, were ob-
served in ovaries treated with chemically distinct �-secretase in-
hibitors (57, 58). Therefore, it is likely that the effects on follicle
formation are indeed mediated through Notch signaling. The
higher suppression of Hey2 mRNA compared with Hes1 in in-
hibitor-treated ovaries supports the notion that Notch signals
chiefly through Hey2 during follicle formation. Hes1 is ex-
pressed in the ovaries of late-stage embryos. Therefore, we can-
not rule out the possibility that Notch signals through Hes1

FIG. 7. Ovary cultures treated with a second �-secretase inhibitor, L-685,458. Ovaries cultured for 4 d in media containing 0.2% DMSO (A) or 10 �M L-685,458 (B)
were fixed and then H�E stained. Germ cell nests are indicated by black boundaries. C and D, Enlarged images of the black rectangles in A and B. E, Follicle
populations in ovaries treated with DMSO (n � 5) and L-685,458 (n � 7) were counted. The concentration of insulin used in these studies was 50 �g/ml. The graph
represents average follicle counts from ovaries cultured in four independent experiments. Scale bars, 50 �m. *, P � 0.005.
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during the earliest stages of follicle formation. Given that Hey2
is expressed in pregranulosa cells and oocytes, it is unclear within
which cellular compartment Hey2 mRNAs are decreased in re-
sponse to DAPT treatment. Decreased Hey2 mRNA expression
in pregranulosa cells would be considered a direct effect because
Notch2 is expressed in pregranulosa cells. Alternatively, the de-
crease in Hey2 mRNA expression may reflect the lower percent-
ages of Hey2-expressing germ cells formed into primordial fol-
licles in DAPT-treated ovaries.

The early stages of follicle assembly appear to be the most
sensitive to Notch signaling, as there were no significant differ-
ences in the percentages of later-stage follicles between the con-
trol and inhibitor-treated ovaries. Notch signaling may therefore
direct the early stages of germ cell nest breakdown and primor-
dial follicle maintenance. It is unknown whether the efficiency of
nest breakdown is reduced and/or the kinetics of follicle forma-
tion delayed in the inhibitor-treated ovaries. Future experiments
in which ovaries are cultured for longer times in the presence of
�-secretase inhibitors may address this question. It is unclear
which receptors are required for promoting follicle formation,
and this poses a challenge to using such inhibitors. Genetic stud-
ies using RNA interference knockdown in ovary culture or con-
ditional gene disruption in mice should eventually shed light on
this issue. Although several key players that mediate primordial
follicle formation and initial growth have been identified (59–
62), these processes likely require the coordinated actions of
multiple cell signaling pathways. We previously described the
interplay of estrogen and activin signaling pathways in the early
mouse ovary (10), and this has been supported by in vitro ex-
periments (63). Interactions between Notch and the activin/
TGF� signaling pathways have also been described (64–67).
Therefore, it will be important to investigate how Notch, estro-

gen, and activin signaling pathways interact in the context of
early follicle development in the mammalian ovary.
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